ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-03-29
    Description: Neutron stars are very dense objects. One teaspoon of their material would have a mass of five billion tons. Their gravitational force is so strong that if an object were to fall from just one meter high it would hit the surface of the respective neutron star at two thousand kilometers per second. In such dense bodies, different particles from the ones present in atomic nuclei, the nucleons, can exist. These particles can be hyperons, that contain non-zero strangeness, or broader resonances. There can also be different states of matter inside neutron stars, such as meson condensates and if the density is height enough to deconfine the nucleons, quark matter. As new degrees of freedom appear in the system, different aspects of matter have to be taken into account.The most important of them being the restoration of the chiral symmetry. This symmetry is spontaneously broken, which is a fact related to the presence of a condensate of scalar quark-antiquark pairs, that for this reason is called chiral condensate. This condensate is present at low densities and even in vacuum. It is important to remember at this point that the modern concept of vacuum is far away from emptiness. It is full of virtual particles that are constantly created and annihilated, being their existence allowed by the uncertainty principle. At very high temperature/density, when the composite particles are dissolved into constituents, the chiral consensate vanishes and the chiral symmetry is restored. To explain how and when chiral symmetry is restored in neutron stars we use a model called non-linear sigma model. This is an effective quantum relativistic model that was developed in order to describe systems of hadrons interacting via meson exchange ...
    Description: thesis
    Keywords: 523 ; THU 400 ; Pulsare, Neutronensterne {Astronomie}
    Language: English
    Type: monograph , publishedVersion
    Format: 104 S.
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-29
    Description: This thesis deals with the analysis of presolar silicates and oxides by high resolution mass spectrometry and electron microscopy techniques. This stardust was identified by its extreme oxygen isotopic anomalies, which point to nucleosynthetic reactions in stellar interiors, in the carbonaceous chondrite Acfer 094. Isotopic, chemical and mineralogical studies on these stardust grains therefore allow the testing of astrophysical questions on Earth, which are otherwise only accessible by spectroscopy and theoretical models. The class of presolar silicates has been identified only six years ago in 2002, although it was known already from spectroscopic observations that silicates represent the most abundant type of dust in the galaxy. The development of the NanoSIMS was a crucial step in this respect, because this ion probe with its superior spatial resolution of only 50 nm allowed the detection of the typically 300 nm sized presolar silicates. A total of 142 presolar silicates and 20 presolar oxides were identified within Acfer 094, whose matrix therefore contains 163 ± 14 ppm presolar silicates and 26 ± 6 ppm presolar oxides. This is among the highest amounts reported so far for any primitive solar system material. The majority of detected stardust grains derive from asymptotic giant branch stars of 1 2.5 Msun and close-to-solar or slightly lower-than-solar metallicity. However, by measuring the Si isotopic compositions of some enigmatic grains, it could be shown that there is a sub-class of presolar silicates characterized by an extreme enrichment of 17O and a moderate enhancement of 30Si relative to solar, whose origins might be explained by formation in binary stellar systems ...
    Description: thesis
    Keywords: 523 ; TJM 000 ; TII 900 ; THQ 000 ; Kosmochemie {Weltraumforschung} ; Interstellarer Staub {Astronomie: Interstellare Materie} ; Kernreaktionen in Sternen; Astrochemie {Astronomie}
    Language: English
    Type: monograph , publishedVersion
    Format: 142 S.
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...