ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer Nature  (1,070,368)
Collection
Keywords
Language
Years
  • 1
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Nature, Springer Nature, ISSN: 0028-0836
    Publication Date: 2024-04-29
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-29
    Description: We present a dataset of reconstructed three-dimensional (3D) englacial stratigraphic horizons in northern Greenland. The data cover four different regions representing key ice-dynamic settings in Greenland: (i) the onset of Petermann Glacier, (ii) a region upstream of the 79° North Glacier (Nioghalvfjerdsbræ), near the northern Greenland ice divide, (iii) the onset of the Northeast Greenland Ice Stream (NEGIS) and (iv) a 700 km wide region extending across the central ice divide over the entire northern part of central Greenland. In this paper, we promote the advantages of a 3D perspective of deformed englacial stratigraphy and explain how 3D horizons provide an improved basis for interpreting and reconstructing the ice-dynamic history. The 3D horizons are provided in various formats to allow a wide range of applications and reproducibility of results.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Nature, Springer Nature, 613(7944), pp. 503-507, ISSN: 0028-0836
    Publication Date: 2024-04-29
    Description: The Greenland Ice Sheet has a central role in the global climate system owing to its size, radiative effects and freshwater storage, and as a potential tipping point1. Weather stations show that the coastal regions are warming2, but the imprint of global warming in the central part of the ice sheet is unclear, owing to missing long-term observations. Current ice-core-based temperature reconstructions3–5 are ambiguous with respect to isolating global warming signatures from natural variability, because they are too noisy and do not include the most recent decades. By systematically redrilling ice cores, we created a high-quality reconstruction of central and north Greenland temperatures from ad 1000 until 2011. Here we show that the warming in the recent reconstructed decade exceeds the range of the pre-industrial temperature variability in the past millennium with virtual certainty (P < 0.001) and is on average 1.5 ± 0.4 degrees Celsius (1 standard error) warmer than the twentieth century. Our findings suggest that these exceptional temperatures arise from the superposition of natural variability with a long-term warming trend, apparent since ad 1800. The disproportionate warming is accompanied by enhanced Greenland meltwater run-off, implying that anthropogenic influence has also arrived in central and north Greenland, which might further accelerate the overall Greenland mass loss.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-29
    Description: The Last Interglacial (~129,000–116,000 years ago) is the most recent geologic period with a warmer-than-present climate. Proxy-based temperature reconstructions from this interval can help contextualize natural climate variability in our currently warming world, especially if they can define changes on decadal timescales. Here, we established a ~4.800-year-long record of sea surface temperature (SST) variability from the eastern Mediterranean Sea at 1–4-year resolution by applying mass spectrometry imaging of long-chain alkenones to a finely laminated organic-matter-rich sapropel deposited during the Last Interglacial. We observe the highest amplitude of decadal variability in the early stage of sapropel deposition, plausibly due to reduced vertical mixing of the highly stratified water column. With the subsequent reorganization of oceanographic conditions in the later stage of sapropel deposition, when SST forcing resembled the modern situation, we observe that the maximum amplitude of reconstructed decadal variability did not exceed the range of the recent period of warming climate. The more gradual, centennial SST trends reveal that the maximal centennial scale SST increase in our Last Interglacial record is below the projected temperature warming in the twenty-first century.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-24
    Description: Mesopelagic fish (meso-fish) are central species within the Southern Ocean (SO). However, their ecosystem role and adaptive capacity to climate change are rarely integrated into marine protected area (MPAs) assessments. This is a pity given their importance as crucial prey and predators in food webs, coupled with the impacts of climate change. Here, we estimate the habitat distribution of nine meso-fish using an ensemble model approach (MAXENT, random forest, and boosted regression tree). Four climate model simulations were used to project their distribution under two representative concentration pathways (RCP4.5 and RCP8.5) for short-term (2006–2055) and long-term (2050–2099) periods. In addition, we assess the ecological representativeness of established and proposed MPAs under climate change scenarios using meso-fish as indicator species. Our models show that all species shift poleward in the future. Lanternfishes (family Myctophidae) are predicted to migrate poleward more than other families (Paralepididae, Nototheniidae, Bathylagidae, and Gonostomatidae). In comparison, lanternfishes were projected to increase habitat area in the eastern SO but lose area in the western SO; the opposite was projected for species in other families. Important areas (IAs) of meso-fish are mainly distributed near the Antarctic Peninsula and East Antarctica. Proposed MPAs cover 23% of IAs at present and 38% of IAs in the future (RCP8.5, long-term future). Many IAs of meso-fish still need to be included in MPA proposals, such as the Prydz Bay and the seas around the Antarctic Peninsula. Our results provide a framework for designing new MPAs incorporating climate change adaptation strategies for MPA management.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-23
    Description: Background: Extreme terrestrial, analogue environments are widely used models to study the limits of life and to infer habitability of extraterrestrial settings. In contrast to Earth’s ecosystems, potential extraterrestrial biotopes are usually characterized by a lack of oxygen. Methods: In the MASE project (Mars Analogues for Space Exploration), we selected representative anoxic analogue environments (permafrost, salt-mine, acidic lake and river, sulfur springs) for the comprehensive analysis of their microbial communities. We assessed the microbiome profile of intact cells by propidium monoazide-based amplicon and shotgun metagenome sequencing, supplemented with an extensive cultivation effort. Results: The information retrieved from microbiome analyses on the intact microbial community thriving in the MASE sites, together with the isolation of 31 model microorganisms and successful binning of 15 high-quality genomes allowed us to observe principle pathways, which pinpoint specific microbial functions in the MASE sites compared to moderate environments. The microorganisms were characterized by an impressive machinery to withstand physical and chemical pressures. All levels of our analyses revealed the strong and omnipresent dependency of the microbial communities on complex organic matter. Moreover, we identified an extremotolerant cosmopolitan group of 34 poly-extremophiles thriving in all sites. Conclusions: Our results reveal the presence of a core microbiome and microbial taxonomic similarities between saline and acidic anoxic environments. Our work further emphasizes the importance of the environmental, terrestrial parameters for the functionality of a microbial community, but also reveals a high proportion of living microorganisms in extreme environments with a high adaptation potential within habitability borders.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Scientific Reports, Springer Nature, 13(1), pp. 21921-21921, ISSN: 2045-2322
    Publication Date: 2024-04-22
    Description: The extreme 2018 and 2022 droughts pose as recent examples of a series of drought events that have hit Europe over the last decades with wide ranging social, environmental and economic impacts. Although the link between atmospheric circulation and meteorological drought is clear and often highlighted during major drought events, there is a lack of in-depth studies linking historical changes in meteorological drought indices and prevailing large-scale atmospheric patterns in Europe. To meet this shortfall, we investigated the relation between changes in large-scale atmospheric patterns and meteorological drought, as indicated by the geopotential height at 500mb (Z500) and the Standardised Precipitation-Evapotranspiration Index (SPEI), respectively. Calculations were done separately for four climate regions (North, West, Central-East and Mediterranean) over the growing season (March–September). Coherent patterns of significant changes towards higher pressure (increasing Z500) and drier conditions (decreasing SPEI) over 1979–2021 are found over West in spring and Central-East in summer. Z500 and SPEI are strongly linked, reflected by both significant (1979–2021) correlations and high co-occurrences (69-96%) between meteorological drought and high-pressure anomaly occurrences since 1900. North shows the most heterogeneous trend patterns and weakest links, but constitutes a hotspot of significantly increasing Z500 in September. Finally, we performed an ensemble-based, European wide analysis of future Z500, based on CMIP6 low-end (SSP126) and high-end (SSP585) 21st century emission scenarios. According to the projected changes, anomalously high-pressure systems will be the new normal regardless of scenario, and well exceeding the 2018 and 2022 levels in the case of the high-end emission scenario. However, due to the limitations of the model ensemble to represent the spatial heterogeneity in historical Z500 variability and trends (1979–2014), projected changes in large-scale circulation, and associated meteorological droughts, are highly uncertain. This paper provides new insight into significant trends in atmospheric circulation over Europe, their strong links to the observed drying trends, and the inability of a CMIP6 ensemble to reproduce the spatial heterogeneity of the circulation changes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Scientific Reports, Springer Nature, 13(1), pp. 18100-18100, ISSN: 2045-2322
    Publication Date: 2024-04-22
    Description: Climate indices are often used as a climate monitoring tool, allowing us to understand how the frequency, intensity, and duration of extreme weather events are changing over time. Here, based on complex statistical analysis we identify highly correlated significant pairs of compound events at the highest spatial resolution, on a monthly temporal scale across Europe. Continental-scale monthly analysis unleashes information on compound events such as high-risk zones, hotspots, monthly shifts of hotspots and trends, risk exposure to land cover and population, and identification of maximum increasing trends. While there are many studies on single or compound climate extremes there are only a few studies that addresses the relationship between pairs of hazards, the incorporation of bioclimatic indices, the determination of a grid best-fit copula approach, and the outlining relevance of this work of compound event risks with exposures. In this respect, here, using 27-bivariate and 10-trivariate copula models, we show that the different hazard pairs have high combined risks of indices related to radiation, temperature, evapotranspiration, bioclimatic-based indices, such as the universal thermal climate index, wind chill index, and heat index, mainly over the northern and eastern European countries. Furthermore, we show that over the last 7 decades, agricultural and coastal areas are highly exposed to the risks of defined hotspots of compound events. In some of the hotspots of compound events-identified by clusters, there is no monthly shifts of hotspots, leading to higher impacts when compounded. Future work needs to integrate the framework and process to identify other compound pairs.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-04-22
    Description: Exceptional drought events, known as megadroughts, have occurred on every continent outside Antarctica over the past ~2,000 years, causing major ecological and societal disturbances. In this Review, we discuss shared causes and features of Common Era (Year 1–present) and future megadroughts. Decadal variations in sea surface temperatures are the primary driver of megadroughts, with secondary contributions from radiative forcing and land–atmosphere interactions. Anthropogenic climate change has intensified ongoing megadroughts in south-western North America and across Chile and Argentina. Future megadroughts will be substantially warmer than past events, with this warming driving projected increases in megadrought risk and severity across many regions, including western North America, Central America, Europe and the Mediterranean, extratropical South America, and Australia. However, several knowledge gaps currently undermine confidence in understanding past and future megadroughts. These gaps include a paucity of high-resolution palaeoclimate information over Africa, tropical South America and other regions; incomplete representations of internal variability and land surface processes in climate models; and the undetermined capacity of water-resource management systems to mitigate megadrought impacts. Addressing these deficiencies will be crucial for increasing confidence in projections of future megadrought risk and for resiliency planning.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Communications Earth & Environment, Springer Nature, 3(1), pp. 277-277, ISSN: 2662-4435
    Publication Date: 2024-04-22
    Description: Numerical simulations indicate that extreme climate events (e.g., droughts, floods, heat waves) will increase in a warming world, putting enormous pressure on society and political decision-makers. To provide a long-term perspective on the variability of these extreme events, here we use a ~700 years tree-ring oxygen isotope chronology from Eastern Europe, in combination with paleo-reanalysis data, to show that the summer drying over Eastern Europe observed over the last ~150 years is to the best of our knowledge unprecedented over the last 700 years. This drying is driven by a change in the pressure patterns over Europe, characterized by a shift from zonal to a wavier flow around 1850CE, leading to extreme summer droughts and aridification. To our knowledge, this is the first and longest reconstruction of drought variability, based on stable oxygen isotopes in the tree-ring cellulose, for Eastern Europe, helping to fill a gap in the spatial coverage of paleoclimate reconstructions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...