ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Signatur: AWI Bio-20-93994
    Materialart: Dissertationen
    Seiten: viii, 140 Seiten , Illustrationen, Diagramme
    Sprache: Englisch
    Anmerkung: Dissertation, Universität Potsdam, 2017 , Table of Contents I. Abstract II. Deutsche Zusammenfassung 0 Challenge 1 Introduction 1.1 The treeline ecotone 1.2 Stand structure drivers in the treeline ecotone 1.3 Climate change and recent treeline changes 1.4 Methods for treeline studies 1.4.1 Overview 1.4.2 Field-based treeline studies 1.4.3 Modelling treeline dynamics 1.5 Study Area 1.6 The Siberian treeline ecotone 1.7 Larix as study Species 1.8 Objectives of this thesis 1.9 Thesis outline 1.10 Contribution of the authors 1.10.1 Manuscript!- published 1.10.2 Manuscript II - submitted 1.10.3 Manuscript III-in preparation 1.10.4 Manuscript IV-submitted 2 Manuscript I Treeline dynamics in Siberia under changing climates as inferred from an individual-based model for Larix 2.1 Abstract 2.2 Introduction 2.3 Materials and Methods 2.3.1 Reference sites 2.3.2 Description of the model LAVESI 2.3.3 The ODD-Protocol for LAVESI 2.3.4 Parameterization 2.3.5 Khatanga climate time-series 2.3.6 Sensitivity analysis 2.3.7 Model experiments 2.4 Results 2.4.1 Sensitivity analysis 2.4.2 Taymyr treeline application 2.4.3 Temperature experiments 2.5 Discussion 2.5.1 Assessment of LAVESI sensitivity 2.5.2 Larix stand simulation under the Taymyr Peninsula weather 2.5.3 Transient Larix response to hypothetical future temperature changes 2.5.4 Conclusions 2.6 Acknowledgements 3 Manuscript II Dissimilar responses of larch stands in northern Siberia to increasing temperatures - a field and simulation based study 3.1 Abstract 3.2 Introduction 3.3 Methods 3.3.1 Study area 3.3.2 Field-based approach 3.3.3 Age analyses 3.3.4 Stand structure analyses 3.3.5 Seed analyses 3.3.6 Establishment history 3.3.7 Modelling approach 3.4 Results 3.4.1 Field data 3.4.2 Simulation study 3.5 Discussion 3.5.1 Data acquisition 3.5.2 Larch-stand patterns across the Siberian treeline ecotone 3.5.3 Warming causes densification in the forest-tundra 3.5.4 Intra-specific competition inhibits densification in the closed forest 3.5.5 Recruitment limitation decelerates densification and northward expansion ofthe single-tree tundra 3.6 Conclusions 3.7 Acknowledgements 4 Manuscript III Spatial patterns and growth sensitivity of larch stands in the Taimyr Depression 4.1 Abstract 4.2 Introduction 4.3 Methods 4.3.1 Study Area 4.3.2 Field data collection 4.3.3 Spatial point patterns 4.3.4 Dendrological approach 4.4 Results 4.4.1 Spatial patterns 4.4.2 Tree growth 4.5 Discussion 4.5.1 Spatial patterns 4.5.2 Tree chronology characteristics 4.6 Conclusion 5 Manuscript IV Patterns of larch stands under different disturbance regimes in the lower Kolyma River area (Russian Far East) 5.1 Abstract 5.2 Introduction 5.3 Methods 5.3.1 Study area and field data collection 5.3.2 Site description 5.3.3 Dendrochronological approach 5.3.4 Statistical analyses 5.4 Results 5.4.1 General stand characteristics and age structure 5.4.2 Spatial patterns 5.5 Discussion 5.5.1 Fire related disturbances 5.5.2 Water-related disturbances: lake drainage, flooding, polygon development 5.5.3 Implications and conclusion 6 Synthesis and Discussion 6.1 Assessment of applied methods 6.1.1 Field-based observations: 6.1.2 Modelling 6.2 Overview of larch stand structures and spatial pattern on different spatial scales 6.2.1 Recent stand structures 6.2.2 Spatial Patterns 6.3 Stand structure drivers and treeline changes 6.3.1 Climate change 6.3.2 Disturbances 6.3.3 Autecology 6.4 Conclusion 6.5 Outlook 7 Appendix 7.1 Supplementary information for Manuscript I 7.2 Supplementary information for Manuscript II 7.2.1 Manuscript II: Appendix 1. Climatic information for the study region 7.2.2 Manuscript II: Appendix 2. Plot-specific values and krummholz appearance 7.2.3 Manuscript II: Appendix 3. Regression analysis for age data 7.2.4 Manuscript II: Appendix 4. Model description 7.3 Supplementary information for Manuscript III 7.4 Supplementary information for Manuscript IV 7.5 Supplementary information 8 References Danksagung Eidesstattliche Erklärung
    Standort: AWI Lesesaal
    Zweigbibliothek: AWI Bibliothek
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Signatur: AWI Bio-20-93530
    Beschreibung / Inhaltsverzeichnis: The Arctic tundra, covering approx. 5.5 % of the Earth’s land surface, is one of the last ecosystems remaining closest to its untouched condition. Remote sensing is able to provide information at regular time intervals and large spatial scales on the structure and function of Arctic ecosystems. But almost all natural surfaces reveal individual anisotropic reflectance behaviors, which can be described by the bidirectional reflectance distribution function (BRDF). This effect can cause significant changes in the measured surface reflectance depending on solar illumination and sensor viewing geometries. The aim of this thesis is the hyperspectral and spectro-directional reflectance characterization of important Arctic tundra vegetation communities at representative Siberian and Alaskan tundra sites as basis for the extraction of vegetation parameters, and the normalization of BRDF effects in off-nadir and multi-temporal remote sensing data. Moreover, in preparation for the upcoming German EnMAP (Environmental Mapping and Analysis Program…
    Materialart: Dissertationen
    Seiten: circa 330 Seiten , Illustrationen, Diagramme
    Sprache: Englisch
    Anmerkung: TABLE OF CONTENTS Abstract Kurzfassung Table of Contents List of Figures List of Tables List of Abbreviations List of Symbols 1 INTRODUCTION 1.1 Background and Scientific Setting 1.2 Motivation and Research Questions 1.3 Structure of Thesis 2 FUNDAMENTALS OF HYPERSPECTRAL AND SPECTRO-DIRECTIONAL REMOTE SENSING 2.1 Hyperspectral Remote Sensing of Vegetation 2.2 Spectro-Directional Remote Sensing of Vegetation 2.3 The EnMAP Satellite System 2.4 Spectro-Goniometer Systems for the Ground-Based Measurement of BRDF Effects 3 THE TUNDRA PERMAFROST STUDY LOCATIONS AND THEIR ENVIRONMENT 3.1 The Eurasia Arctic Transect (EAT) 3.1.1 Geological and Climatic Setting 3.1.2 Vegetation 3.2 The North American Arctic Transect (NAAT) 3.2.1 Geological and Climatic Setting 3.2.2 Vegetation 4 OBSERVATIONS AND METHODOLOGY 4.1 Observations Used for this Study 4.1.1 The ECI-GOA-Yamal 2011 Expedition 4.1.2 The EyeSight- NAAT-Alaska 2012 Expedition 4.1.3 Data Used for Hyperspectral Characterization of Arctic Tundra 4.1.4 Data Used for Spectro-Directional Characterization of Arctic Tundra 4.2 Methodology Used for Field Work and Data Analysis 4.2.1 Field Spectroscopy and Hyperspectral Data Analysis 4.2.2 Considerations for the Field Spectro-Goniometer Measurements and the Spectro-Directional Data Analysis 5 DEVELOPMENT AND PRECOMMISSIONING INSPECTION OF THE MANTIS FIELD SPECTRO-GONIOMETER 5.1 Introduction 5.2 Theoretical Background 5.3 Description of the Field Spectro-Goniometer System 5.3.1 Construction Schedule 5.3.2 Description of the Field Spectro-Goniometer Platform (ManTIS) 5.3.3 Sensor Configuration of the AWI ManTIS Field Spectro-Goniometer 5.3.4 Measurement Strategy 5.3.5 Software for Semi-Automatic Control 5.4 Error Assessment 5.4.1 Radiometrical Accuracy 5.4.2 Pointing Accuracy 5.4.3 Ground Instantaneous Field of View and Sensor Self-Shadowing 5.4.4 Temporal Illumination Changes and Environmental Influences 5.5 Data Analysis 5.5.1 Data Processing 5.5.2 Data Visualization 5.6 Performance of ManTIS Field Spectro-Goniometer in the Field 5.6.1 Test Site and Experiment Setup 5.6.2 Results and Discussion 5.7 Conclusions and Outlook 6 HYPERSPECTRAL REFLECTANCE CHARACTERIZATION OF LOW ARCTIC TUNDRA VEGETATION 6.1 Introduction 6.2 Material & Methods 6.2.1 Study Area 6.2.2 Environmental Gradients/Zones and Vegetation Description 6.2.3 Data Acquisition and Pre-Processing 6.2.4 Data Analysis 6.3 Results 6.3.1 The Zonal Climate Gradient 6.3.2 Acidic Versus Non-Acidic Tundra (Soil pH Zones) 6.3.3 The Toposequence at Happy Valley (Subzone E) 6.3.4 The Soil Moisture Gradient at Franklin Bluffs (Subzone D) 6.4 Discussion 6.4.1 Overview of Field Characterization and Spectral Properties along the Gradients 6.4.2 Performance of Spectral Metrics and Vegetation Indices 6.5 Conclusions 7 RESULTS OF THE SPECTRO-DIRECTIONAL REFLECTANCE INVESTIGATIONS 7.1 Overview of the Spectro-Directional Reflectance Characteristics of Low Arctic Tundra Vegetation 7.1.1 Representativeness of the Study Plots Representing Tundra Vegetation 7.1.2 Vaskiny Dachi – Bioclimate Subzone D 7.1.3 Happy Valley – Bioclimate Subzone E 7.1.4 Franklin Bluffs – Bioclimate Subzone D 7.2 Influence of High Sun Zenith Angles on the Reflectance Anisotropy 7.2.1 MAT (Happy Valley) 7.2.2 MNT (Franklin Bluffs) 7.3 Variability in Multi-Angular Remote Sensing Products of Low Arctic Tundra Environments 7.3.1 Spectro-Directional Variability of Different Low Arctic Plant Communities 7.3.2 Spectro-Directional Variability under Varying Sun Zenith Angles 8 DISCUSSION 8.1 The Hyperspectral Reflectance Characteristics of Tundra Vegetation in Context of the Spectro-Goniometer Measurements 8.2 Applicability of the ManTIS Field Spectro-Goniometer System 8.3 The Spectro-Directional Reflectance Characteristics of Tundra Vegetation 8.4 Variability in Reflectance Anisotropy at High Sun Zenith Angles 8.5 Applicability of Multi- Angular Remote Sensing Products for Arctic Tundra Environments 9 CONCLUSIONS & OUTLOOK Acknowledgments References Appendix Table of Contents of the Appendix References of the Appendix Statutory Declaration / Eidesstattliche Erklärung
    Standort: AWI Lesesaal
    Zweigbibliothek: AWI Bibliothek
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Signatur: AWI A7-20-93463
    Beschreibung / Inhaltsverzeichnis: Die Arktis erwärmt sich schneller als der Rest der Erde. Die Auswirkungen manifestieren sich unter Anderem in einer verstärkten Erwärmung der arktischen Grenzschicht. Diese Arbeit befasst sich mit Wechselwirkungen zwischen synoptischen Zyklonen und der arktischen Atmosphäre auf lokalen bis überregionalen Skalen. Ausgangspunkt dafür sind Messdaten und Modellsimulationen für den Zeitraum der N-ICE2015 Expedition, die von Anfang Januar bis Ende Juni 2015 im arktischen Nordatlantiksektor stattgefunden hat. Anhand von Radiosondenmessungen lassen sich Auswirkungen von synoptischen Zyklonen am deutlichsten im Winter erkennen, da sie durch die Advektion warmer und feuchter Luftmassen in die Arktis den Zustand der Atmosphäre von einem strahlungs-klaren in einen strahlungs-opaken ändern. Obwohl dieser scharfe Kontrast nur im Winter existiert, zeigt die Analyse, dass der integrierte Wasserdampf als Indikator für die Advektion von Luftmassen aus niedrigen Breiten in die Arktis auch im Frühjahr geeignet ist. Neben der Advektion von…
    Materialart: Dissertationen
    Seiten: xiv, 147 Seiten , Illustrationen, Diagramme
    Sprache: Deutsch
    Anmerkung: Inhaltsverzeichnis 1 Einleitung 1.1Wissenschaftliche Zielsetzung 2 Grundlagen 2.1 Grundgleichungen 2.2 Potentielle Vorticity 2.3 Planetare Wellen 2.4 Atmosphärische Instabilität 2.5 Grenzschicht 2.6 Kopplung von Tropo- und Stratosphäre 3 Daten und Methoden 3.1 N-ICE2015 3.1.1 Expeditionsbeschreibung 3.1.2 Ziele der Expedition 3.2 Daten 3.2.1 Beobachtungsdaten 3.2.2 ERA-Interim Reanalyse 3.2.3 Das HIRHAM5 Modell 3.3 Analysemethoden 3.3.1 Temperaturinversionen 3.3.2 Vertikale Stabilität 3.3.3 Grenzschichthöhe 3.3.4 Eady Growth Rate 3.3.5 2d-Skalenfilterung und -Pattern-Korrelation 3.3.6 Nudging Experiment 4 Analyse der N-ICE2015 Radiosonden 4.1 Blick auf die Troposphäre 4.2 Fallstudie zum M2-Sturm: A 4.3 Zyklonencharakteristika 4.4 Temperaturinversionen und Stabilität 4.5 Vergleich mit ERA-Interim, SHEBA und Ny-Ålesund 4.6 Résumé der Expeditionsdaten 5 Nudging Studien mit HIRHAM5 5.1 Vergleich mit ERA-Interim 5.2 Vergleich der Simulationen 5.3 Fallstudie zum M2-Sturm: B 5.3.1 Synoptische Aktivität 5.4 Statistischer Vergleich 6 Einfluss der Stratosphäre 6.1 Stratosphäre im Winter 2014/2015 6.2 Fallstudie zum M2-Sturm: C 6.3 PV als Ladung 6.4 Résumé der Beobachtungen 7 Zusammenfassung und Ausblick A Zusätztliche Abbildungen B Literaturverzeichnis
    Standort: AWI Lesesaal
    Zweigbibliothek: AWI Bibliothek
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Signatur: AWI G3-20-93465
    Materialart: Dissertationen
    Seiten: xi, 113, xxxvii Seiten , Illustrationen, Diagramme
    Sprache: Englisch
    Anmerkung: Table of Contents Abstract Zusammenfassung List of Figures List of Tables 1. Introduction 1.1 Scientific Background 1.1.1 Arctic Climate Change 1.1.2 Permafrost Degradation 1.1.3 The Arctic Freshwater System and its Biogeochemistry 1.2 Objectives 1.3 Study Region and Methods 1.3.1 Study Area 1.3.2 Field Sampling and Measurements 1.3.3 Geochemical Analyses 1.3.4 Data Processing 1.4 Thesis Structure 1.5 Author Contributions 2. Spatial Variability of Dissolved Organic Carbon, Solutes and Suspended Sediment in Disturbed Low Arctic Coastal Watersheds 2.1 Abstract 2.2 Introduction 2.3 Study Site 2.4 Methods 2.4.1 Stream Monitoring 2.4.2 Mapping of Disturbances 2.4.3 Flux Estimates and Statistics 2.5 Results 2.5.1 Catchment Disturbance 2.5.2 Runoff and Hydrochemistry 2.5.3 Lateral Transport of Stream Water 2.5.4 Hydrochemical Composition and Fluxes in Nearby Streams 2.6 Discussion 2.6.1 Total Runoff and Water Quality 2.6.2 Water Quality Changes from Headwaters to Downstream 2.6.3 Changes in Hydrochemistry and Isotopic Composition over Time 2.6.4 Importance of Disturbances for Hydrochemistry 2.7 Conclusions 2.8 Supplementary Material 3. Terrestrial Colored Dissolved Organic Matter (cDOM) in Arctic Catchments - Characterizing Organic Matter Composition Across the Arctic 3.1 Introduction 3.2 Study Area 3.3 Methods 3.3.1 Field Methods and Hydrochemistry 3.3.2 Statistical Analyses 3.4 Results 3.4.1 Meteorological Conditions and General Hydrochemistry 3.4.2 DOC and cDOM Absorption Characteristics 3.4.3 Downstream Patterns of DOC and cDOM Along Longitudinal Transects 3.4.4 Temporal Trends ofDOC and cDOM with Changing Meteorological Conditions 3.5 Discussion 3.5.1 Limitations of cDOM Measurements from Terrestrial Sources 3.5.2 Catchment Processes and Biogeochemical Cycling 3.5.2.1 Regional Catchment Properties 3.5.2.2 Rainfall Events 3.5.2.3 Downstream Patterns and Impact of Permafrost Disturbance 3.5.3 Nature of cDOM-DOC Across the Terrestrial Arctic 3.6 Conclusion 3.7 Supplementary Material 4. Summer Rainfall DOC, Solute and Sediment Fluxes in a Small Arctic Coastal Catchment on Herschel Island (Yukon Territory, Canada) 4.1 Abstract 4.2 Introduction 4.3 Study Site 4.4 Methodology 4.4.1 Weather data 4.4.2 Hydrology 4.4.3 Suspended Sediment and Hydrochemistry 4.4.4 Flux Estimates and Statistics 4.5 Results 4.5.1 Meteorological Conditions 4.5.2 Streamflow and Electrical Conductivity 4.5.3 Transport of Suspended Sediment and Organic Matter 4.5.4 Solute Transport 4.5.5 Alluvial Fan Sampling 4.6 Discussion 4.6.1 Hydrological Response 4.6.2 Water Quality and Fluxes 4.6.3 Rainfall Response and Flow Pathways 4.7 Conclusions 4.8 Supplementary Material 5. Synthesis 5.1 Impacts of Permafrost Degradation on Stream Biogeochemistry 5.2 Controls on DOM Quality across the Arctic 5.3 Biogeochemical Fluxes from Small Coastal Catchments to the Arctic Ocean 5.4 Challenges 5.5 Outlook Acronyms Bibliography Acknowledgements Eidesstattliche Erklärung
    Standort: AWI Lesesaal
    Zweigbibliothek: AWI Bibliothek
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Signatur: AWI G8-20-93468
    Materialart: Dissertationen
    Seiten: XIII, 151, A28 Seiten , Illustrationen, Diagramme, Karten
    Sprache: Englisch
    Anmerkung: Table of contents Abstract Zusammenfassung Abbreviations and Nomenclature 1. Introduction 1.1 Scientific Background 1.1.1 Climate and Permafrost 1.1.2 Remote Sensing 1.1.3 Research Questions 1.2 General Approach 1.3 Thesis Structure 1.4 Author’ s contributions 1.4.1 Chapter 2 1.4.2 Chapter 3 1.4.3 Chapter 4 1.4.4 Chapter 5 1.4.5 Appendix Paper 1 2. Detection of landscape dynamics in the Arctic Lena Delta withtemporally dense Landsat time-series Stacks 2.1 Abstract 2.2 Introduction 2.3 Study Area and Data 2.3.1 Study Area 2.3.2 Data 2.3.3 Methods/processing 2.4 Results 2.4.1 Regional Scale changes 2.4.2 Local scale changes 2.5 Discussion 2.5.1 Regional scale changes 2.5.2 Local scale changes 2.5.3 Data quality 2.5.4 Data usage and outlook 2.6 Conclusion 2.7 Data Archive 2.8 Acknowledgements 2.9 Appendix A. Supplementary Data 3. Landsat-Based Trend Analysis of Lake Dynamics across NorthernPermafrost Regions 3.1 Abstract 3.2 Introduction 3.3 Study Sites 3.3.1 Alaska North Slope (NSL) 3.3.2 Alaska Kobuk-Selawik Lowlands (AKS) 3.3.3 Central Yakutia (CYA) 3.3.4 Kolyma Lowland (KOL) 3.4 Data and Methods 3.4.1 Data and Trend Analysis 3.4.2 Pixel-Based Machine-Leaming Classification 3.4.3 Object-Based Image Analysis 3.4.4 Data Quality and Post-Processing 3.4.5 Calculation of Lake Change Statistics 3.5 Results 3.5.1 NSL (Alaska North Slope) 3.5.2 AKS (Alaska Kobuk-Selawik Lowlands) 3.5.3 CYA (Central Yakutia) 3.5.4 KOL (Kolyma Lowland) 3.6 Discussion 3.6.1 Data Analysis 3.6.2 Comparison of Sites and Prior Studies 3.7 Conclusions 3.8 Supplementary Materials 3.9 Acknowledgements 3.10 Appendix A 4. Remotely sensing recent permafrost region disturbances across Arcticto Subarctic transects 4.1 Abstract 4.2 Introduction 4.3 Results 4.3.1 Lakes 4.3.2 Retrogressive Thaw Slumps 4.3.3 Wildfire 4.4 Discussion 4.5 Methods 4.5.1 Remote Sensing Data Processing 4.5.2 Auxiliary Data Sources 5. Tundra landform and Vegetation productivity trend maps for theArctic Coastal Plain of northern Alaska 5.1 Abstract 5.2 Background & Summary 5.3 Methods 5.3.1 Polygonal tundra geomorphology mapping 5.3.2 Image processing 5.3.3 Image Classification 5.3.4 Decadal scale NDVI trend analysis 5.4 Data Records 5.5 Technical Validation 5.5.1 Tundra Geomorphology Map 5.5.2 NDVI Trend Map 5.6 Data Citation 6. Discussion/Synthesis 6.1 Landsat-based trend analysis 6.1.1 Spatial Scale 6.1.2 Time series analysis 6.1.3 Model complexity 6.2 Mapping of permafrost landscape dynamics 6.2.1 Lake dynamics 6.2.2 Wildfire 6.2.3 Retrogressive Thaw Slumps 6.3 Pan-arctic scale distribution and consequences of changes inpermafrost 6.4 Outlook Bibliography A-1. Appendix: Reduced arctic tundra productivity linked with landform and climate change interactions A-1.1 Abstract A-1.2 Introduction A-1.3 Methods A-1.4 Results A-1.5 Discussion Danksagung/Acknowledgements Eidesstattliche Erklärung
    Standort: AWI Lesesaal
    Zweigbibliothek: AWI Bibliothek
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Signatur: AWI G3-19-92415
    Materialart: Dissertationen
    Seiten: VIII, 154, xv Seiten , Illustrationen, Diagramme, Karten
    Sprache: Englisch
    Anmerkung: Table of contents Abstract Zusammenfassung 1 Motivation 2 Introduction 2.1 Arctic climate changes and their impacts on Coastal processes 2.2 Shoreline retreat along Arctic coasts 2.3 Impacts of Coastal erosion 2.3.1 Material fluxes 2.3.2 Retrogressive thaw slumps 2.3.3 Socio-economic impacts 2.4 Objectives 2.5 Study area 2.6 Thesis structure 2.7 Authors’ contributions 3 Variability in rates of Coastal change along the Yukon coast, 1951 to 2015 3.1 Introduction 3.2 Study Area 3.3 Data and Methods 3.3.1 Remote sensing data 3.3.2 Field survey data 3.3.3 Classification of shoreline 3.3.4 Transect-wise analyses of shoreline movements through time 3.4 Results 3.4.1 Temporal variations in shoreline change rates 3.4.2 Alongshore rates of change 3.4.3 Shoreline dynamics along field sites 3.4.4 Dynamics of lagoons, barrier Islands and spits (gravel features) 3.4.5 Yukon Territory land loss 3.5 Discussion 3.5.1 Temporal variations in shoreline change rates 3.5.2 Alongshore rates of change 3.5.3 Dynamics of lagoons, barrier Islands, and spits (gravel features) 3.5.4 Expected shoreline changes as a consequence of future climate warming 3.6 Conclusions Context 4 Coastal erosion of permafrost Solls along the Yukon Coastal Plain and Kuxes oforganic carbon to the Canadian Beaufort Sea 4.1 Introduction 4.2 Study Area 4.3 Methods 4.3.1 Sample collection and laboratory analyses 4.3.2 Soll organic carbon determinations 4.3.3 Flux of organic soil carbon and Sediments 4.3.4 Fate of the eroded soil organic carbon 4.4 Results 4.4.1 Ground lce 4.4.2 Organic carbon contents 4.4.3 Material fluxes 4.5 Discussion 4.5.1 Ground lce 4.5.2 Organic carbon contents 4.5.3 Material fluxes 4.5.4 Organic carbon in nearshore Sediments 4.6 Conclusion Context 5 Terrain Controls on the occurrence of Coastal retrogressive thaw slumpsalong the Yukon Coast, Canada 5.1 Introduction 5.2 Study Area 5.3 Methods 5.3.1 Mapping of RTSs and landform Classification 5.3.2 Environmental variables 5.3.3 Univariate regression trees 5.4 Results 5.4.1 Characteristics of RTS along the coast 5.4.2 Density and areal coverage od RTSs along the Yukon Coast 5.5 Discussion 5.5.1 Characteristics and distribution of RTSs along the Yukon Coast 5.5.2 Terrain factors explaining RTS occurrence 5.5.3 Coastal processes 5.6 Conclusions Context 6 Impacts of past and fiiture Coastal changes on the Yukon coast - threats forcultural sites, infrastructure and travel routes 6.1 Introduction 6.2 Study Area 6.3 Methods 6.3.1 Data for shoreline projections 6.3.2 Shoreline projection for the conservative scenario (S1) 6.3.3 Shoreline Projection for the dynamic scenario (S2) 6.3.4 Positioning and characterizing of cultural sites 6.3.5 Calculation of losses under the S1 and S2 scenarios 6.3.6 Estimation of future dynamics in very dynamic areas 6.4 Results and discussion 6.4.1 Past and future shoreline change rates 6.4.2 Cultural sites 6.4.3 Infrastructure and travel routes 6.5 Conclusions 7 Discussion 7.1 The importance of understanding climatic drivers of Coastal changes 7.2 The influence of shoreline change rates on retrogressive thaw slump activity 7.3 On the calculation of carbon fluxes from Coastal erosion along the Yukon coast 7.4 Impacts of present and future Coastal erosion on the natural and human environment 7.5 Synthesis 8 Summary and Conclusions Bibliography Supporting Material Data Set ds01 Table S1 Table S3 Abbreviations and Nomendature Acknowledgements
    Standort: AWI Lesesaal
    Zweigbibliothek: AWI Bibliothek
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Signatur: AWI G3-19-92460
    Beschreibung / Inhaltsverzeichnis: The Yukon Coast in Canada is an ice-rich permafrost coast and highly sensitive to changing environmental conditions. Retrogressive thaw slumps are a common thermoerosion feature along this coast, and develop through the thawing of exposed ice-rich permafrost on slopes and removal of accumulating debris. They contribute large amounts of sediment, including organic carbon and nitrogen, to the nearshore zone. The objective of this study was to 1) identify the climatic and geomorphological drivers of sediment-meltwater release, 2) quantify the amount of released meltwater, sediment, organic carbon and nitrogen, and 3) project the evolution of sediment-meltwater release of retrogressive thaw slumps in a changing future climate. The analysis is based on data collected over 18 days in July 2013 and 18 days in August 2012. A cut-throat flume was set up in the main sediment-meltwater channel of the largest retrogressive thaw slump on Herschel Island. In addition, two weather stations, one on top of the undisturbed tundra and one on the…
    Materialart: Monographie ausleihbar
    Seiten: 163 Seiten , Illustrationen, Diagramme
    Sprache: Englisch
    Anmerkung: Table of Contents Abstract Kurzfassung Abbreviations and nomenclature 1. Introduction 2. Scientific Background 2.1. Permafrost 2.2.Retrogressive Thaw Slumps 2.3. Inputs of Freshwater, Sediment and Carbon into the Canadian Beaufort Sea 3. Study Area 3.1. Regional Setting: Yukon Coast and Herschel Island 3.2. Retrogressive Thaw Slumps 4. Material and Methods 4.1. Field Work 4.1.1. Terrain Photography 4.1.2. Differential Global Positioning System (DGPS) 4.1.3. Light Detection And Ranging (LiDAR) and Digital Elevation Model (DEM) 4.1.4. Micrometeorology 4.1.5. Discharge Measurement 4.1.6. Multiple Regression-Statistical Relationships between Micrometeorological Variables and Discharge 4.1.7. Sampling 4.2. Laboratory Analyses 4.2.1. Sedimentological Analyses 4.2.2. Hydrochemical Analyses 4.3. Fluxes of Sediment and (In-) Organic Matter 5. Results 5.1. Field Work 5.1.1. Terrain Photography 5.1.2. Differential Global Positioning System (DGPS) 5.1.3. Light Detecting And Ranging (LiDAR) and Digital Elevation Model (DEM) 5.1.4. Micrometeorology 5.1.5. Discharge 5.1.6. Multiple Regression - Statistical Relationships between Micrometeorology and Discharge 5.2. Laboratory Analyses 5.2.1. Sedimentological Analyses 5.2.2. Hydrochemical Analyses 5.3. Fluxes of Sediment-meltwater 6. Discussion 6.1. Microclimatological and Geomorphological Factors Controlling Discharge 6.1.1. Diurnal Variations 6.1.2. Seasonal Variations 6.2. Contribution of Retrogressive Thaw Slumps to the Sediment Budget of the Yukon Coast 6.2.1. Origin of Outflow Material 6.2.2. Slump D in the Regional Context 6.2.3. Seasonal Sediment Budget Compilation for Slump D 6.2.4. Retrogressive Thaw Slump Occurrence along the Yukon Coast 6.2.5. Input to the Beaufort Sea 6.3. Projected Climatic Change and its Impact on Retrogressive Thaw Slump Outflow 6.4. Uncertainties and Limitations 6.5. Future Research 7. Conclusion 8. Appendix 8.1. Field Work 8.1.1. Slump D's northern headwall profile 8.1.2. Collinson Head slump 8.1.3. Herschel Island West Coast slump 8.1.4. Roland Bay slump 8.1.5. Kay Point slump 8.2. Laboratory Work 8.2.1. Volumetric Ice Content 8.2.2. Grain Size 8.3. Evolution of Slump D 8.3.1. Geo Eye satellite of Slump D 8.3.2. Aerial Oblique Photography of Slump D 8.3.3. LiDAR of Slump D 8.3.4. Time Lapse Photography of Slump D's Headwall 9. References 10. Financial and technical support 11. Acknowledgement - Danksagung
    Standort: AWI Lesesaal
    Zweigbibliothek: AWI Bibliothek
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Signatur: AWI G6-19-92461
    Materialart: Dissertationen
    Seiten: XVI, 203 Seiten , Illustrationen, Diagramme
    Sprache: Englisch
    Anmerkung: Dissertation, Universität Potsdam, 2019 , Table of contents Abstract Zusammenfassung Abbreviations 1 Introduction 1.1 Scientific background 1.1.1 Permafrost in the Northern Hemisphere 1.1.2 The permafrost carbon climate feedback 1.1.3 Rapidly changing, deep permafrost environments 1.2 Aims of this dissertation 1.3 Investigated study areas 1.4 Basic method overview 1.4.1 Field work in the Arctic 1.4.2 Laboratory procedure 1.4.3 Analysis ofl andscape-scale carbon and nitrogen stocks 1.5 Thesis organization 1.6 Overview of publications 1.6.1 Publication#1 - Yedoma landscape publication 1.6.2 Publication#2 - Thermokarst lake sequence publication 1.6.3 Publication#3 - North Alaska Arctic river delta publication 1.6.4 Extended Abstract - Western Alaska river delta study 1.6.5 Appendices - Supplementary material and paper in preparation II Carbon and nitrogen pools in thermokarst-affected permafrost landscapes in Arctic Siberia 2.1 Abstract 2.2 Introduction 2.3 Material and methods 2.3.1 Study area 2.3.2 Field Work 2.3.3 Laboratory analysis 2.3.4 Landform classification and upscaling C and N pools 2.4 Results 2.4.1 Sedimentological results 2.4.2 Sampling site SOC and N stocks 2.4.3 Upscaling: Landscape SOC and N stocks 2.4.4 Radiocarbon dates 2.5 Discussion 2.5.1 Site specific soil organic C and N stock characteristics 2.5.2 Upscaling of C and N pools 2.5.3 Sediment and organic C accumulation rates 2.5.4 Characterizing soil organic carbon 2.5.5 The fate of organic carbon in thermokarst-affected yedoma in Siberia 2.6 Conclusions III Impacts of successive thermokarst lake stages on soil organic matter, Arctic Alaska 3.1 Abstract 3.2 Plain language summary 3.3 Introduction 3.4 Study site 3.5 Methods 3.5.1 Core collection 3.5.2 Biogeochemical analyses 3.5.3 Study area OC and N calculation 3.6 Results 3.6.1 Biogeochemistry 3.6.2 Sediment organic carbon and nitrogen stocks 3.6.3 Radiocarbon dates and carbon accumulation rates 3.6.4 Landscape C and N budget 3.7 Discussion 3.7.1 Impact of thermokarst lake dynamics on organic matter storage 3.7.2 High organic C and N stocks on the ACP 3.7.3 Landscape chronology 3.7.4 Organic matter accumulation 3.7.5 Future development 3.8 Conclusions IV Sedimentary and geochemical characteristics of two small permafrost-dominated Arctic river deltas in northern Alaska 4.1 Abstract 4.2 Introduction 4.3 Study area 4.4 Material and Methods 4.4.1 Soil organic carbon and soil nitrogen storage 4.4.2 Radiocarbon dating and organic carbon accumulation rates 4.4.3 Grain size distribution 4.4.4 Scaling carbon and nitrogen contents to landscape level 4.5 Results 4.5.1 Carbon and nitrogen contents 4.5.2 Radiocarbon dates and accumulation rates 4.5.3 Grain size distribution 4.5.4 Arctic river delta carbon and nitrogen storage 4.6. Discussion 4.6.1 Significance of carbon and nitrogen stocks in Arctic river deltas 4.6.2 SOC and SN distribution with depth 4.6.3 Sedimentary characteristics 4.6.3.1 Accumulation rates 4.6.3.2 Sediment distribution 4.6.4 Impacts of future changes 4.6.5 Significance of remotely sensed upscaling results 4.7 Conclusions V Soil carbon and nitrogen stocks in Arctic river deltas - New data for three Western Alaskan deltas 5.1 Abstract 5.2 Introduction 5.3 Study sites 5.4 Methods 5.5 Results and discussion 5.5 Conclusions VI Discussion 6.1 Interregional comparison 6.2 Changing thermokarst landscapes and their global impact 6.3 A growing C and N data base 6.4 Outlook - potential follow-up projects VII Synthesis VIII References Appendix A Synthesis of SOC and N inventories Appendix B Supplementary material to Chapter II Appendix C Supplementary material to Chapter III Appendix D Supplementary material to Chapter IV Appendix E Supplementary material to Chapter V Appendix F Arctic river delta data set - Version 1.0 Acknowledgements - Danksagung
    Standort: AWI Lesesaal
    Zweigbibliothek: AWI Bibliothek
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Signatur: AWI G3-19-92414
    Beschreibung / Inhaltsverzeichnis: Permafrost, defined as ground that remains frozen for at least two consecutive years, is a prominent feature of polar regions. In the Northern Hemisphere, approximately 23 million km2 of the ground are affected by permafrost. Climatic warming, which has a greater effect on the Arctic than on any other region on Earth, leads to permafrost thaw, caused by gradual deepening of the seasonal unfrozen layer (active layer), thermokarst formation (i.e. land subsidence due to ground ice loss) and thermo-erosion. In the course of thaw, formerly freeze-locked organic carbon (OC) is mobilized and mineralized into greenhouse gases (GHGs), fostering further climate warming – a process known as permafrost carbon feedback. Current climate models focus on GHG release from gradual deepening of the active layer and neglect the OC turnover during lateral transport induced by thermokarst and abrupt thermo-erosion. As such, the accelerated erosion of Arctic permafrost coasts, which make up ~34 % of the global coasts, deliver vast amounts of OC into the Arctic Ocean. However, little is known about the amounts of labile and fast bioavailable dissolved OC (DOC), the impact of thermokarst on mobilized organic matter (OM) characteristics, and the release of GHGs from eroding permafrost coasts. To fill that knowledge gap, the main objectives of the thesis are to investigate (i) how much DOC is mobilized from coastal erosion, (ii) how thermokarst and -erosion alters OM characteristics upon thaw on transit to the ocean, and (iii) how much GHGs are emitted from the nearshore zones of eroding permafrost coasts. Field work and sampling took place along the Yukon coast and on Qikiqtaruk (Herschel Island) in the western Canadian Arctic. An interdisciplinary approach was used to quantify OM (OC and nitrogen) as well as to identify degradation processes. The methods used included sedimentology, geo- and hydrochemistry, remote sensing, statistical analyses, and gas chromatography. The thesis shows that considerable amounts of DOC are released from eroding permafrost coasts. Although OC fluxes into the ocean are dominated by DOC from Arctic rivers and particulate OC (POC), labile DOC derived from permafrost plays an important role as it is quickly available for biogeochemical cycling and turnover into GHGs. During transit from land to ocean OM characteristics are substantially altered by thermokarst formation and thermo-erosion. In mudpools, originating from in-situ thawed permafrost, as well as in thaw streams draining thermokarst features towards the ocean, mobilized OM issubject to dilution with melted ground ice and degradation, which result in a decrease of OM contents by more than 50 %. The turnover of OC continues in the nearshore zone. The biochemically most labile OC portions are rapidly lost within months and mineralized into GHGs. The production of GHGs in the ocean is 60 to 80 % as efficient as on land and primarily in form of carbon dioxide (CO2), due to aerobic conditions in the nearshore zone. During each open water season in the Arctic approximately 0.7 to 1.2 Tg of CO2 are emitted from the coastal fringe. The remaining OM is buried in nearshore and shelf sediments, potentially remobilized by waves, currents and ice scouring at later stages. To conclude, the thesis shows that eroding permafrost coasts release large amounts of OC, from which considerable portions are labile DOC. In the course of thermokarst formation and thermo-erosion, OM is diluted and the most labile portions subject to rapid turnover into GHGs. This shows that eroding permafrost coasts are a major yet neglected source of CO2 to the atmosphere. With increasing temperatures and longer sea ice-free conditions projected for the Arctic, the erosion of permafrost coasts accelerates. Consequently, the transfer of OC to the ocean accompanied by GHG production increases, which is expected to have drastic impacts for the climate and coastal ecosystems.
    Materialart: Dissertationen
    Seiten: IX, 106, A1-A-57 Seiten , Illustrationen, Diagramme
    Sprache: Englisch
    Anmerkung: Table of contents Abstract Zusammenfassung Abbreviations and nomenclatureI 1. Introduction 1.1 Scientific background 1.1.1 Permafrost and ground ice 1.1.2 Organic carbon pools and fluxes into the Arctic Ocean 1.1.3 Climate warming and permafrost thaw 1.1.4 Permafrost degradation and coastal erosion 1.1.5 Study area Yukon coast and Qikiqtaruk 1.2 Knowledge gaps 1.3 Aims and objectives 1.4 Thesis structure and author's contribution 2. Eroding permafrost coasts release low amounts of dissolved organic carbon (DOC) from ground ice into the nearshore zone of the Arctic Ocean 2.1 Abstract 2.2 Introduction 2.3 Study area 2.4 Methods 2.4.1 Field work 2.4.2 DOC concentration 2.4.3 DOC flux estimation 2.5 Results 2.5.1 Segmentation of the coast - literature synthesis 2.5.2 DOC concentration 2.5.3 DOC stocks and fluxes 2.6 Discussion 2.6.1 DOC concentrations in ground ice 2.6.2 DOC fluxes from the YC 2.6.3 DOC fluxes and the Arctic carbon budget 2.7 Conclusion and Outlook 2.8 Acknowledgements 3.Transformation of terrestrial organic matter along thermokarst-affected permafrost coasts in the Arctic 3.1 Abstract 3.2 Introduction 3.3 Study area 3.3 Methods 3.3.1 Field work 3.3.2 Sedimentology, stratigraphy, and vegetation 3.3.3 Organic matter 3.3.4 Statistics 3.3.5 Transformation of organic matter 3.3.6 Fate of organic matter in the nearshore zone 3.4 Results 3.4.1 Sedimentology, stratigraphy, and vegetation 3.4.2 Organic matter 3.4.3 C/N-ratios and δ13C 3.4.4 Biomarkers 3.5 Discussion 3.5.1 Transformation of organic matter in the disturbed zone 3.5.2 Fate of organic matter in the nearshore zone 3.5.3 Environmental impact of the RTS 3.6 Conclusion 3.7 Acknowledgements 4. Rapid greenhouse gas release from eroding permafrost coasts 4.1 Summary 4.2 Background 4.3 Study site 4.4 Sampling and incubation setup 4.5 Findings and discussion 4.6 Conclusion 4.7 Methods 4.7.1 Incubation conditions 4.7.2 Gas measurements 4.7.3 Geo- and hydrochemical analysis 4.8 Acknowledgements 5. Synthesis 5.1 Mobilization of permafrost OC pools by coastal erosion 5.2 Transformation of permafrost OM on transit from land to sea 5.3 Fate and pathways of permafrost OC in the nearshore zone 5.4 Conclusion and outlook References Appendix I: Dissolved organic carbon (DOC) in Arctic ground ice I-1 Abstract I-2 Introduction I-3 Study area and study sites I-4 Material and methods I-4-1 Laboratory analyses I-4-2 Statistical methods I-5 Results I-5-1 DOC and DIC concentrations I-5-2 Correlation matrix I-5-3 Principal components I-5-4 Univariate Tree Model (UTM) I-6 Discussion I-6-1 DOC stocks in ground ice and relevance to carbon cycling I-6-2 Carbon sequestration and origin in relation to inorganic geochemistry I-6-3 DOC mobility and quality upon permafrost degradation I-7 Conclusions and outlook I-8 Acknowledgements Appendix II: Supplementary material for Chapter 2 II-1 Supplementary table - Ground ice and geochemical data II-2 Supplementary table - Coastal segments and DOC flux Appendix III: Supplementary material for Chapter 3 III-1 Normalized Differenced Vegetation Index map III-2 Photograph of a massive ice bed in a RTS III-3 Calculation of biomarker proxies III-4 Supplementary table - Summary of geochemical data III-5 Supplementary table - Summary of statistical analysis AppendixI V: Supplementary material for Chapter 4 IV-1 Design of the incubation experiment IV-2 Photograph of a standard incubation setup IV-3 Conversion of gas amounts into mass IV-4 Total and daily aerobic CH4 production IV-5 Histogram summarizing OC losses and CO2 emissions IV-6 Supplementary table - Summary of TOC, DOC, and pH data IV-7 Supplementary table - Summary of TN, TOC/TN, and δ13C-TOC data IV-8 Supplementary table - Summary of total CO2 and CH4 production data IV-9 Supplementary table - Comparison of incubation setups IV-10 Supplementary table - Summary of daily CO2 production data IV-11 Supplementary table - Summary of daily CH4 production data Acknowledgements-Danksagung
    Standort: AWI Lesesaal
    Zweigbibliothek: AWI Bibliothek
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Signatur: AWI A13-19-92242
    Beschreibung / Inhaltsverzeichnis: Die Dynamik der Atmosphäre der Erde umfasst einen Bereich von mikrophysikalischer Turbulenz über konvektive Prozesse und Wolkenbildung bis zu planetaren Wellenmustern. Für Wettervorhersage und zur Betrachtung des Klimas über Jahrzehnte und Jahrhunderte ist diese Gegenstand der Modellierung mit numerischen Verfahren. Mit voranschreitender Entwicklung der Rechentechnik sind Neuentwicklungen der dynamischen Kerne von Klimamodellen, die mit der feiner werdenden Auflösung auch entsprechende Prozesse auflösen können, notwendig. Der dynamische Kern eines Modells besteht in der Umsetzung (Diskretisierung) der grundlegenden dynamischen Gleichungen für die Entwicklung von Masse, Energie und Impuls, so dass sie mit Computern numerisch gelöst werden können. Die vorliegende Arbeit untersucht die Eignung eines unstetigen Galerkin-Verfahrens niedriger Ordnung für atmosphärische Anwendungen. Diese Eignung für Gleichungen mit Wirkungen von externen Kräften wie Erdanziehungskraft und Corioliskraft ist aus der Theorie nicht selbstverständlich. Es werden nötige Anpassungen beschrieben, die das Verfahren stabilisieren, ohne sogenannte „slope limiter” einzusetzen. Für das unmodifizierte Verfahren wird belegt, dass es nicht geeignet ist, atmosphärische Gleichgewichte stabil darzustellen. Das entwickelte stabilisierte Modell reproduziert eine Reihe von Standard-Testfällen der atmosphärischen Dynamik mit Euler- und Flachwassergleichungen in einem weiten Bereich von räumlichen und zeitlichen Skalen. Die Lösung der thermischen Windgleichung entlang der mit den Isobaren identischen charakteristischen Kurven liefert atmosphärische Gleichgewichtszustände mit durch vorgegebenem Grundstrom einstellbarer Neigung zu(barotropen und baroklinen)Instabilitäten, die für die Entwicklung von Zyklonen wesentlich sind. Im Gegensatz zu früheren Arbeiten sind diese Zustände direkt im z-System(Höhe in Metern)definiert und müssen nicht aus Druckkoordinaten übertragen werden.Mit diesen Zuständen, sowohl als Referenzzustand, von dem lediglich die Abweichungen numerisch betrachtet werden, und insbesondere auch als Startzustand, der einer kleinen Störung unterliegt, werden verschiedene Studien der Simulation von barotroper und barokliner Instabilität durchgeführt. Hervorzuheben ist dabei die durch die Formulierung von Grundströmen mit einstellbarer Baroklinität ermöglichte simulationsgestützte Studie des Grades der baroklinen Instabilität verschiedener Wellenlängen in Abhängigkeit von statischer Stabilität und vertikalem Windgradient als Entsprechung zu Stabilitätskarten aus theoretischen Betrachtungen in der Literatu
    Materialart: Dissertationen
    Seiten: v, 160 Seiten , Illustrationen, Diagramme
    Sprache: Deutsch
    Anmerkung: Inhaltsverzeichnis: 1. Einleitung. - 2. Atmosphärische Gleichungssysteme. - 2.1. Zur Notation. - 2.2. Geometrie im β-Kanal. - 2.3. Gleichungen in Flussform. - 2.4. Euler-Gleichungen. - 2.4.1. Energiegleichung. - 2.4.2. Bewegungsgleichungen. - 2.4.3. Flussform des gesamten Gleichungssystems. - 2.4.4. Schallgeschwindigkeit. - 2.4.5. Druck und Energie. - 2.4.6. Energie als Erhaltungsvariable. - 2.5. Euler-Gleichungen mit Referenzfeld. - 2.6. Linearisierte Euler-Gleichungen. - 2.7. Flachwassergleichungen. - 2.8. Flachwasseräquivalente Dynamik mit Euler-Gleichungen. - 3. Unstetiges Galerkin-Verfahren. - 3.1. Räumliche Diskretisierung. - 3.1.1. Integralform und numerischer Fluss. - 3.1.2. Koeffizientendarstellung der Gleichungen. - 3.1.3. Koordinatentransformation mit Orographie. - 3.1.4. Quadratur. - 3.1.5. Basisfunktionen im Rechteckgitter. - 3.1.6. Diskretisierung von analytischen Anfangsbedingungen. - 3.2. Zeitliche Diskretisierung. - 3.2.1. Expliziter Zeitschritt. - 3.2.2. Semi-impliziter Zeitschritt. - 3.2.3. Skalierung von Einheiten. - 3.2.4. Zeitschrittbestimmung. - 3.3. Randbedingungen. - 3.3.1. Periodische Randbedingungen. - 3.3.2. Reflektive Randbedingungen. - 3.3.3. Spezifische Randbedingungen für Euler-Gleichungen. - 3.3.4. Absorptionsschicht. - 3.4. Diffusion. - 4. Atmosphärische Gleichgewichtszustände. - 4.1. Anforderungen an stationäre Zustände. - 4.1.1. Verschwindende Advektion von Masse und potentieller Temperatur. - 4.1.2. Stationäre Impulsgleichung. - 4.2. Wind ohne Corioliskraft. - 4.3. Geostrophischer Wind. - 4.4. Vorgegebener Grundstrom mit einstellbarer Baroklinität. - 4.4.1. Lösungsalgorithmus. - 4.4.2. Zulässige Windfelder und ihre Definition außerhalb des Modellgebietes. - 4.4.3. Spezialfall konstanten thermischen Windes. - 4.5. Barotroper Grundstrom als analytischer Spezialfall. - 4.6. Charakterisierung der Baroklinität. - 4.7. Geostrophischer Zustand für Flachwassergleichungen. - 5. Numerische Stabilität von Gleichgewichtszuständen und Erhaltungseigenschaften. - 5.1. Polynomiale Balancierung des DG-Verfahrens. - 5.1.1. Ausgangssituation („low0bal0“). - 5.1.2. Isotrope Reduktion des Polynomgrades der Quellterme („low1bal0“). - 5.1.3. Isotrope Polynomgradreduktion von Quelltermen sowie Projektion der Flussfunktion („low1bal1“). - 5.1.4. Volle Balancierung mit selektiver Polynomgradreduktion und Projektion der Flussfunktion („low2bal1“). - 5.2. Konvergenz. - 5.3. Langzeitstabilität und Erhaltungseigenschaften. - 6. Atmosphärische Testfälle. - 6.1. Aufsteigende warme Blase. - 6.2. Schwerewellen. - 6.3. Bergüberströmung. - 6.4. Barotrope Instabilität. - 7. Atmosphärische Instabilitäten in mittleren Breiten. - 7.1. Barotrope Instabilität mit Euler-Gleichungen in 2D und 3D. - 7.1.1. Wavelet-Spektrum. - 7.2. Barokline Instabilität in Abhängigkeit von statischer Stabilität und thermischem Wind. - 7.2.1. Einfluss der statischen Stabilität. - 7.2.2. Einfluss der vertikalen Diskretisierung. - 7.3. Entstehung zyklonaler Wirbel aus baroklin instabilem Grundstrom. - 7.3.1. Konfiguration. - 7.3.2. Entwicklung von Impulsdifferenz. - 7.3.3. Vorticity im Horizontalschnitt. - 7.3.4. Globale Charakterisierung . - 7.4. Langzeitentwicklung aus baroklinen Zuständen. - 7.4.1. Konfiguration. - 7.4.2. Entwicklung von Impulsdifferenz und Energie. - 7.4.3. Vorticity im Horizontalschnitt. - 7.4.4 Globale Charakterisierung. - 7.4.5. Wavelet-Spektrum. - 7.4.6. Zonales Mittel. - 8. Zusammenfassung und Ausblick. - A. Mathematische Aspekte. - A.1. Profilfunktionen. - A.2. Differenzen und Normen. - A.3. Wavelet-Analyse. - A.4. Darstellung aus der Diskretisierung. - A.5. Erhaltungseigenschaften mit Quadratur. - B. Details zu Euler-Gleichungen. - B.1. Vertikale Linearisierung der Euler-Gleichungen für Präkonditionierer des semi-impliziten Zeitschrittes. - B.1.1. Vertikales lineares Gleichungssystem. - B.1.2. Diskretisierung und Matrizen. - B.1.3. Implizites Gleichungssystem. - B.2. Zustände im hydrostatischen Gleichgewicht. - B.2.1. Isotherm. - B.2.2. Polytrop. - B.2.3. Isentrop. - B.2.4. Mehrfach polytrop. - B.2.5. Uniform geschichtet. - B.3. Barokliner Zustand imp-System. - C. Zusätzliche Simulationsdaten. - C.1. Stabilitätskarten zu baroklinen Langzeitsimulationen. - C.2. Wirbelentstehung nahe Oberrand. - C.3. Zusätzliche Horizontalschnitte des baroklinen Langzeitlaufes. - D. Implementierung: Programmpaket Polyflux. - E. Korrekturen zur Veröffentlichung. - Mathematische Definitionen. - Abkürzungen und Begriffe. - Literatur.
    Standort: AWI Lesesaal
    Zweigbibliothek: AWI Bibliothek
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...