ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nature Publishing Group  (13,578)
  • 2005-2009  (13,578)
Collection
Years
Year
  • 1
    Publication Date: 2023-01-31
    Description: Palaeoclimate records and numerical model simulations indicate that changes in tropical and subtropical sea surface temperatures and in the annual average position of the intertropical convergence zone are linked to high-latitude climate changes on millennial to glacial–interglacial timescales. It has recently been suggested that cooling in the high latitudes associated with abrupt climate-change events is evident primarily during the northern hemisphere winter, implying increased seasonality at these times8. However, it is unclear whether such a seasonal bias also exists for the low latitudes. Here we analyse the Mg/Ca ratios of surface-dwelling foraminifera to reconstruct sea surface temperatures in the northeastern Gulf of Mexico for the past 300,000 years. We suggest that sea surface temperatures are controlled by the migration of the northern boundary of the Atlantic Warm Pool, and hence the position of the intertropical convergence zone during boreal summer, and are relatively insensitive to winter conditions. Our results suggest that summer Atlantic Warm Pool expansion is primarily affected by glacial–interglacial variability and low-latitude summer insolation. Because a clear signature of rapid climate-change events, such as the Younger Dryas cold event, is lacking in our record, we conclude that high-latitude events seem to influence only the winter Caribbean climate conditions, consistent with the hypothesis of extreme northern-hemisphere seasonality during abrupt cooling events.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © 2008 Nature Publishing Group. This article is distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike license. The definitive version was published in Nature Biotechnology 26 (2008): 909-915, doi:10.1038/nbt.1482.
    Description: Plant-parasitic nematodes are major agricultural pests worldwide and novel approaches to control them are sorely needed. We report the draft genome sequence of the root-knot nematode Meloidogyne incognita, a biotrophic parasite of many crops, including tomato, cotton and coffee. Most of the assembled sequence of this asexually reproducing nematode, totaling 86 Mb, exists in pairs of homologous but divergent segments. This suggests that ancient allelic regions in M. incognita are evolving toward effective haploidy, permitting new mechanisms of adaptation. The number and diversity of plant cell wall–degrading enzymes in M. incognita is unprecedented in any animal for which a genome sequence is available, and may derive from multiple horizontal gene transfers from bacterial sources. Our results provide insights into the adaptations required by metazoans to successfully parasitize immunocompetent plants, and open the way for discovering new antiparasitic strategies.
    Description: SCRI laboratory (V.C.B. and J.T.J.) received funding from the Scottish Government. This work benefited from links funded via COST Action 872. G.V.M. and V.L. are supported by ARC, CNRS, EMBO, MENRT and Region Rhone-Alpes. G.V.M., M.R.-R. and V.L. are also funded by the EU Cascade Network of Excellence and the integrated project Crescendo. M.-C.C. is supported by MENRT.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 438 (7070). p. 929.
    Publication Date: 2021-08-20
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 433 (7023). p. 212.
    Publication Date: 2021-08-16
    Description: Sexual mimicry among animals is widespread, but does it impart a fertilization advantage in the widely accepted ‘sneak–guard’ model of sperm competition? Here we describe field results in which a dramatic facultative switch in sexual phenotype by sneaker-male cuttlefish leads to immediate fertilization success, even in the presence of the consort male. These results are surprising, given the high rate at which females reject copulation attempts by males, the strong mate-guarding behaviour of consort males, and the high level of sperm competition in this complex mating system
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-10-26
    Description: Resolving flow geometry in the mantle wedge is central to understanding the thermal and chemical structure of subduction zones, subducting plate dehydration, and melting that leads to arc volcanism, which can threaten large populations and alter climate through gas and particle emission. Here we show that isotope geochemistry and seismic velocity anisotropy provide strong evidence for trench-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua. This finding contradicts classical models, which predict trench-normal flow owing to the overlying wedge mantle being dragged downwards by the subducting plate. The isotopic signature of central Costa Rican volcanic rocks is not consistent with its derivation from the mantle wedge1, 2, 3 or eroded fore-arc complexes4 but instead from seamounts of the Galapagos hotspot track on the subducting Cocos plate. This isotopic signature decreases continuously from central Costa Rica to northwestern Nicaragua. As the age of the isotopic signature beneath Costa Rica can be constrained and its transport distance is known, minimum northwestward flow rates can be estimated (63–190 mm yr-1) and are comparable to the magnitude of subducting Cocos plate motion (approx85 mm yr-1). Trench-parallel flow needs to be taken into account in models evaluating thermal and chemical structure and melt generation in subduction zones.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-05-11
    Description: Marine sponges (phylum Porifera) are among the oldest multicellular animals (metazoans), the sea's most prolific producers of bioactive metabolites, and of considerable ecological importance due to their abundance and ability to filter enormous volumes of seawater. In addition to these important attributes, sponge microbiology is now a rapidly expanding field.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-18
    Description: The climate of the North Atlantic region exhibits fluctuations on decadal timescales that have large societal consequences. Prominent examples include hurricane activity in the Atlantic1, and surface-temperature and rainfall variations over North America2, Europe3 and northern Africa4. Although these multidecadal variations are potentially predictable if the current state of the ocean is known5, 6, 7, the lack of subsurface ocean observations8 that constrain this state has been a limiting factor for realizing the full skill potential of such predictions9. Here we apply a simple approach—that uses only sea surface temperature (SST) observations—to partly overcome this difficulty and perform retrospective decadal predictions with a climate model. Skill is improved significantly relative to predictions made with incomplete knowledge of the ocean state10, particularly in the North Atlantic and tropical Pacific oceans. Thus these results point towards the possibility of routine decadal climate predictions. Using this method, and by considering both internal natural climate variations and projected future anthropogenic forcing, we make the following forecast: over the next decade, the current Atlantic meridional overturning circulation will weaken to its long-term mean; moreover, North Atlantic SST and European and North American surface temperatures will cool slightly, whereas tropical Pacific SST will remain almost unchanged. Our results suggest that global surface temperature may not increase over the next decade, as natural climate variations in the North Atlantic and tropical Pacific temporarily offset the projected anthropogenic warming.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-01-07
    Description: Large uncertainties remain in the current and future contribution to sea level rise from Antarctica. Climate warming may increase snowfall in the continent’s interior1,2,3, but enhance glacier discharge at the coast where warmer air and ocean temperatures erode the buttressing ice shelves4,5,6,7,8,9,10,11. Here, we use satellite interferometric synthetic-aperture radar observations from 1992 to 2006 covering 85% of Antarctica’s coastline to estimate the total mass flux into the ocean. We compare the mass fluxes from large drainage basin units with interior snow accumulation calculated from a regional atmospheric climate model for 1980 to 2004. In East Antarctica, small glacier losses in Wilkes Land and glacier gains at the mouths of the Filchner and Ross ice shelves combine to a near-zero loss of 4±61 Gt yr−1. In West Antarctica, widespread losses along the Bellingshausen and Amundsen seas increased the ice sheet loss by 59% in 10 years to reach 132±60 Gt yr−1 in 2006. In the Peninsula, losses increased by 140% to reach 60±46 Gt yr−1 in 2006. Losses are concentrated along narrow channels occupied by outlet glaciers and are caused by ongoing and past glacier acceleration. Changes in glacier flow therefore have a significant, if not dominant impact on ice sheet mass balance.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 435 (7044). p. 901.
    Publication Date: 2019-11-11
    Description: Scattered groups of these ancient fish may all stem from a single remote population. Coelacanths were discovered in the Comoros archipelago to the northwest of Madagascar in 1952. Since then, these rare, ancient fish have been found to the south off Mozambique, Madagascar and South Africa, and to the north off Kenya and Tanzania — but it was unclear whether these are separate populations or even subspecies. Here we show that the genetic variation between individuals from these different locations is unexpectedly low. Combined with earlier results from submersible and oceanographic observations1, 2, our findings indicate that a separate African metapopulation is unlikely to have existed and that locations distant from the Comoros were probably inhabited relatively recently by either dead-end drifters or founders that originated in the Comoros.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  The ISME Journal, 3 (1). pp. 4-12.
    Publication Date: 2019-09-24
    Description: Our understanding of the composition and activities of microbial communities from diverse habitats on our planet has improved enormously during the past decade, spurred on largely by advances in molecular biology. Much of this research has focused on the bacteria, and to a lesser extent on the archaea and viruses, because of the relative ease with which these assemblages can be analyzed and studied genetically. In contrast, single-celled, eukaryotic microbes (the protists) have received much less attention, to the point where one might question if they have somehow been demoted from the position of environmentally important taxa. In this paper, we draw attention to this situation and explore several possible (some admittedly lighthearted) explanations for why these remarkable and diverse microbes have remained largely overlooked in the present era of the microbe. © 2009 International Society for Microbial Ecology All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...