ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (181,892)
  • National Academy of Sciences  (181,892)
Collection
Years
Journal
Topic
  • 1
    Publication Date: 2023-10-26
    Description: The Tierra Blanca Joven (TBJ) eruption from Ilopango volcano deposited thick ash over much of El Salvador when it was inhabited by the Maya, and rendered all areas within at least 80 km of the volcano uninhabitable for years to decades after the eruption. Nonetheless, the more widespread environmental and climatic impacts of this large eruption are not well known because the eruption magnitude and date are not well constrained. In this multifaceted study we have resolved the date of the eruption to 431 ± 2 CE by identifying the ash layer in a well-dated, high-resolution Greenland ice-core record that is 〉7,000 km from Ilopango; and calculated that between 37 and 82 km3 of magma was dispersed from an eruption coignimbrite column that rose to ∼45 km by modeling the deposit thickness using state-of-the-art tephra dispersal methods. Sulfate records from an array of ice cores suggest stratospheric injection of 14 ± 2 Tg S associated with the TBJ eruption, exceeding those of the historic eruption of Pinatubo in 1991. Based on these estimates it is likely that the TBJ eruption produced a cooling of around 0.5 °C for a few years after the eruption. The modeled dispersal and higher sulfate concentrations recorded in Antarctic ice cores imply that the cooling would have been more pronounced in the Southern Hemisphere. The new date confirms the eruption occurred within the Early Classic phase when Maya expanded across Central America.
    Description: Published
    Description: 26061-26068
    Description: 1V. Storia eruttiva
    Description: JCR Journal
    Keywords: Maya; eruption dispersal; large volcanic eruptions; radiocarbon; sulfate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-10-26
    Description: Constraining secular variation of the Earth's magnetic field strength in the past is fundamental to understanding short-term processes of the geodynamo. Such records also constitute a powerful and independent dating tool for archaeological sites and geological formations. In this study, we present 11 robust archaeointensity results from Pre-Pottery to Pottery Neolithic Jordan that are based on both clay and flint (chert) artifacts. Two of these results constitute the oldest archaeointensity data for the entire Levant, ancient Egypt, Turkey, and Mesopotamia, extending the archaeomagnetic reference curve for the Holocene. Virtual Axial Dipole Moments (VADMs) show that the Earth's magnetic field in the Southern Levant was weak (about two-thirds the present field) at around 7600 BCE, recovering its strength to greater than the present field around 7000 BCE, and gradually weakening again around 5200 BCE. In addition, successful results obtained from burnt flint demonstrate the potential of this very common, and yet rarely used, material in archaeomagnetic research, in particular for prehistoric periods from the first use of fire to the invention of pottery.
    Description: Published
    Description: e2100995118
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Keywords: Jordan ; Neolithic ; Pre-Pottery Neolithic ; archaeointensity
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-03-08
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Saunders, J. K., McIlvin, M. R., Dupont, C. L., Kaul, D., Moran, D. M., Horner, T., Laperriere, S. M., Webb, E. A., Bosak, T., Santoro, A. E., & Saito, M. A. Microbial functional diversity across biogeochemical provinces in the central Pacific Ocean. Proceedings of the National Academy of Sciences of the United States of America, 119(37),(2022): e2200014119, https://doi.org/10.1073/pnas.2200014119.
    Description: Enzymes catalyze key reactions within Earth’s life-sustaining biogeochemical cycles. Here, we use metaproteomics to examine the enzymatic capabilities of the microbial community (0.2 to 3 µm) along a 5,000-km-long, 1-km-deep transect in the central Pacific Ocean. Eighty-five percent of total protein abundance was of bacterial origin, with Archaea contributing 1.6%. Over 2,000 functional KEGG Ontology (KO) groups were identified, yet only 25 KO groups contributed over half of the protein abundance, simultaneously indicating abundant key functions and a long tail of diverse functions. Vertical attenuation of individual proteins displayed stratification of nutrient transport, carbon utilization, and environmental stress. The microbial community also varied along horizontal scales, shaped by environmental features specific to the oligotrophic North Pacific Subtropical Gyre, the oxygen-depleted Eastern Tropical North Pacific, and nutrient-rich equatorial upwelling. Some of the most abundant proteins were associated with nitrification and C1 metabolisms, with observed interactions between these pathways. The oxidoreductases nitrite oxidoreductase (NxrAB), nitrite reductase (NirK), ammonia monooxygenase (AmoABC), manganese oxidase (MnxG), formate dehydrogenase (FdoGH and FDH), and carbon monoxide dehydrogenase (CoxLM) displayed distributions indicative of biogeochemical status such as oxidative or nutritional stress, with the potential to be more sensitive than chemical sensors. Enzymes that mediate transformations of atmospheric gases like CO, CO2, NO, methanethiol, and methylamines were most abundant in the upwelling region. We identified hot spots of biochemical transformation in the central Pacific Ocean, highlighted previously understudied metabolic pathways in the environment, and provided rich empirical data for biogeochemical models critical for forecasting ecosystem response to climate change.
    Description: Funding for this research was provided by the Gordon and Betty Moore Foundation (grants 3782 and 8453), the US NSF (NSF grants OCE-1924554, 2123055, 2125063, 2048774, and 2026933), the Center for Chemical Currencies on a Microbial Planet (NSF grant OCE-2019589), and the US NIH General Medicine (grant GM135709-01A1). J.K.S. was supported by a NASA Postdoctoral Program Fellowship with the NASA Astrobiology Program, administered by Universities Space Research Association under contract with NASA. A.E.S. was supported by the Sloan Foundation, the Simons Foundation, and NSF grant OCE-1437310. A portion of this research used resources at the US Department of Energy JGI sponsored by the Office of Biological and Environmental Research and operated under contract DE-AC02-05CH11231 (JGI). C.L.D. and D.K. were supported by NSF grants OCE-1558453 and OCE-2049299. T.H. was supported by NSF grant OCE-2023456.
    Keywords: Marine microbial ecology ; Metaproteomics ; Mesopelagic ; Nitrification ; Methylotrophy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-03-08
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Schorn, S., Ahmerkamp, S., Bullock, E., Weber, M., Lott, C., Liebeke, M., Lavik, G., Kuypers, M. M. M., Graf, J. S., & Milucka, J. Diverse methylotrophic methanogenic archaea cause high methane emissions from seagrass meadows. Proceedings of the National Academy of Sciences of the United States of America, 119(9), (2022): e2106628119, https://doi.org/10.1073/pnas.2106628119.
    Description: Marine coastlines colonized by seagrasses are a net source of methane to the atmosphere. However, methane emissions from these environments are still poorly constrained, and the underlying processes and responsible microorganisms remain largely unknown. Here, we investigated methane turnover in seagrass meadows of Posidonia oceanica in the Mediterranean Sea. The underlying sediments exhibited median net fluxes of methane into the water column of ca. 106 µmol CH4 ⋅ m−2 ⋅ d−1. Our data show that this methane production was sustained by methylated compounds produced by the plant, rather than by fermentation of buried organic carbon. Interestingly, methane production was maintained long after the living plant died off, likely due to the persistence of methylated compounds, such as choline, betaines, and dimethylsulfoniopropionate, in detached plant leaves and rhizomes. We recovered multiple mcrA gene sequences, encoding for methyl-coenzyme M reductase (Mcr), the key methanogenic enzyme, from the seagrass sediments. Most retrieved mcrA gene sequences were affiliated with a clade of divergent Mcr and belonged to the uncultured Candidatus Helarchaeota of the Asgard superphylum, suggesting a possible involvement of these divergent Mcr in methane metabolism. Taken together, our findings identify the mechanisms controlling methane emissions from these important blue carbon ecosystems.
    Description: This project was funded by theMax Planck Society.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-11-10
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Orvis, J., Albertin, C., Shrestha, P., Chen, S., Zheng, M., Rodriguez, C., Tallon, L., Mahurkar, A., Zimin, A., Kim, M., Liu, K., Kandel, E., Fraser, C., Sossin, W., & Abrams, T. The evolution of synaptic and cognitive capacity: insights from the nervous system transcriptome of Aplysia. Proceedings of the National Academy of Sciences of the United States of America, 119(28), (2022): e2122301119, https://doi.org/10.1073/pnas.2122301119.
    Description: The gastropod mollusk Aplysia is an important model for cellular and molecular neurobiological studies, particularly for investigations of molecular mechanisms of learning and memory. We developed an optimized assembly pipeline to generate an improved Aplysia nervous system transcriptome. This improved transcriptome enabled us to explore the evolution of cognitive capacity at the molecular level. Were there evolutionary expansions of neuronal genes between this relatively simple gastropod Aplysia (20,000 neurons) and Octopus (500 million neurons), the invertebrate with the most elaborate neuronal circuitry and greatest behavioral complexity? Are the tremendous advances in cognitive power in vertebrates explained by expansion of the synaptic proteome that resulted from multiple rounds of whole genome duplication in this clade? Overall, the complement of genes linked to neuronal function is similar between Octopus and Aplysia. As expected, a number of synaptic scaffold proteins have more isoforms in humans than in Aplysia or Octopus. However, several scaffold families present in mollusks and other protostomes are absent in vertebrates, including the Fifes, Lev10s, SOLs, and a NETO family. Thus, whereas vertebrates have more scaffold isoforms from select families, invertebrates have additional scaffold protein families not found in vertebrates. This analysis provides insights into the evolution of the synaptic proteome. Both synaptic proteins and synaptic plasticity evolved gradually, yet the last deuterostome-protostome common ancestor already possessed an elaborate suite of genes associated with synaptic function, and critical for synaptic plasticity.
    Description: This work was supported by NSF EAGER Award IOS-1255695 and NIH grant R01 MH 55880 grant to T.W.A.; by a Natural Sciences and Engineering Research Council of Canada Discovery grant and Canadian Institutes of Health Research project grant 340328 to W.S.; by funding from the HHMI to E.R.K.; and by a Hibbitt Early Career Fellowship to C.A. W.S. is James McGill Professor at McGill University.
    Keywords: Neural plasticity ; Synaptic plasticity ; Evolution ; Neuromodulation ; Aplysia
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-11-10
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in McDermott, J. M., Parnell-Turner, R., Barreyre, T., Herrera, S., Downing, C. C., Pittoors, N. C., Pehr, K., Vohsen, S. A., Dowd, W. S., Wu, J.-N., Marjanović, M., & Fornari, D. J. Discovery of active off-axis hydrothermal vents at 9° 54’N East Pacific Rise. Proceedings of the National Academy of Sciences of the United States of America, 119(30), (2022): e2205602119, https://doi.org/10.1073/pnas.2205602119.
    Description: Comprehensive knowledge of the distribution of active hydrothermal vent fields along midocean ridges is essential to understanding global chemical and heat fluxes and endemic faunal distributions. However, current knowledge is biased by a historical preference for on-axis surveys. A scarcity of high-resolution bathymetric surveys in off-axis regions limits vent identification, which implies that the number of vents may be underestimated. Here, we present the discovery of an active, high-temperature, off-axis hydrothermal field on a fast-spreading ridge. The vent field is located 750 m east of the East Pacific Rise axis and ∼7 km north of on-axis vents at 9° 50′N, which are situated in a 50- to 100-m-wide trough. This site is currently the largest vent field known on the East Pacific Rise between 9 and 10° N. Its proximity to a normal fault suggests that hydrothermal fluid pathways are tectonically controlled. Geochemical evidence reveals deep fluid circulation to depths only 160 m above the axial magma lens. Relative to on-axis vents at 9° 50′N, these off-axis fluids attain higher temperatures and pressures. This tectonically controlled vent field may therefore exhibit greater stability in fluid composition, in contrast to more dynamic, dike-controlled, on-axis vents. The location of this site indicates that high-temperature convective circulation cells extend to greater distances off axis than previously realized. Thorough high-resolution mapping is necessary to understand the distribution, frequency, and physical controls on active off-axis vent fields so that their contribution to global heat and chemical fluxes and role in metacommunity dynamics can be determined.
    Description: Financial support was provided by the NSF Awards OCE-1949938 (to J.M.M.), OCE-1948936 (to R.P.-T.), and OCE-1949485 (to D.J.F. and T.B.).
    Keywords: Hydrothermal activity ; Midocean ridge ; Ocean chemistry ; Chemosynthetic ecosystem ; East Pacific Rise
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-31
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Northcutt, A. J., Kick, D. R., Otopalik, A. G., Goetz, B. M., Harris, R. M., Santin, J. M., Hofmann, H. A., Marder, E., & Schulz, D. J. Molecular profiling of single neurons of known identity in two ganglia from the crab Cancer borealis. Proceedings of the National Academy of Sciences of the United States of America, 116 (52) (2019): 26980-26990, doi: 10.1073/pnas.1911413116.
    Description: Understanding circuit organization depends on identification of cell types. Recent advances in transcriptional profiling methods have enabled classification of cell types by their gene expression. While exceptionally powerful and high throughput, the ground-truth validation of these methods is difficult: If cell type is unknown, how does one assess whether a given analysis accurately captures neuronal identity? To shed light on the capabilities and limitations of solely using transcriptional profiling for cell-type classification, we performed 2 forms of transcriptional profiling—RNA-seq and quantitative RT-PCR, in single, unambiguously identified neurons from 2 small crustacean neuronal networks: The stomatogastric and cardiac ganglia. We then combined our knowledge of cell type with unbiased clustering analyses and supervised machine learning to determine how accurately functionally defined neuron types can be classified by expression profile alone. The results demonstrate that expression profile is able to capture neuronal identity most accurately when combined with multimodal information that allows for post hoc grouping, so analysis can proceed from a supervised perspective. Solely unsupervised clustering can lead to misidentification and an inability to distinguish between 2 or more cell types. Therefore, this study supports the general utility of cell identification by transcriptional profiling, but adds a caution: It is difficult or impossible to know under what conditions transcriptional profiling alone is capable of assigning cell identity. Only by combining multiple modalities of information such as physiology, morphology, or innervation target can neuronal identity be unambiguously determined.
    Description: We thank members of the D.J.S., H.A.H., and E.M. laboratories for helpful discussions. We thank the Genomic Sequencing and Analysis Facility (The University of Texas [UT] at Austin) for library preparation and sequencing and the bioinformatics consulting team at the UT Austin Center for Computational Biology and Bioinformatics for helpful advice. This work was supported by National Institutes of Health grant R01MH046742-29 (to E.M. and D.J.S.) and the National Institute of General Medical Sciences T32GM008396 (support for A.J.N.) and National Institute of Mental Health grant 5R25MH059472-18 and the Grass Foundation (support for Neural Systems and Behavior Course at the Marine Biological Laboratory).
    Keywords: qPCR ; RNA-seq ; Stomatogastric ; Expression profiling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Peredo, E. L., & Cardon, Z. G. Shared up-regulation and contrasting down-regulation of gene expression distinguish desiccation-tolerant from intolerant green algae. Proceedings of the National Academy of Sciences of the United States of America, 117(29), 1(2020): 7438-17445, doi:10.1073/pnas.1906904117.
    Description: Among green plants, desiccation tolerance is common in seeds and spores but rare in leaves and other vegetative green tissues. Over the last two decades, genes have been identified whose expression is induced by desiccation in diverse, desiccation-tolerant (DT) taxa, including, e.g., late embryogenesis abundant proteins (LEA) and reactive oxygen species scavengers. This up-regulation is observed in DT resurrection plants, mosses, and green algae most closely related to these Embryophytes. Here we test whether this same suite of protective genes is up-regulated during desiccation in even more distantly related DT green algae, and, importantly, whether that up-regulation is unique to DT algae or also occurs in a desiccation-intolerant relative. We used three closely related aquatic and desert-derived green microalgae in the family Scenedesmaceae and capitalized on extraordinary desiccation tolerance in two of the species, contrasting with desiccation intolerance in the third. We found that during desiccation, all three species increased expression of common protective genes. The feature distinguishing gene expression in DT algae, however, was extensive down-regulation of gene expression associated with diverse metabolic processes during the desiccation time course, suggesting a switch from active growth to energy-saving metabolism. This widespread downshift did not occur in the desiccation-intolerant taxon. These results show that desiccation-induced up-regulation of expression of protective genes may be necessary but is not sufficient to confer desiccation tolerance. The data also suggest that desiccation tolerance may require induced protective mechanisms operating in concert with massive down-regulation of gene expression controlling numerous other aspects of metabolism.
    Description: Dr. Louise Lewis (University of Connecticut) provided F. rotunda and A. deserticola. Suzanne Thomas and Jordan Stark provided expert technical assistance. This work was supported by the NSF, Division of Integrative Organismal Systems (1355085 to Z.G.C.), and an anonymous donor (to Z.G.C.).
    Keywords: Aquatic green algae ; Desert-evolved green algae ; Extremophiles ; Microbiotic ; Crusts ; Scenedesmaceae
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Criswell, K. E., Roberts, L. E., Koo, E. T., Head, J. J., & Gillis, J. A. Hox gene expression predicts tetrapod-like axial regionalization in the skate, Leucoraja erinacea. Proceedings of the National Academy of Sciences of the United States of America, 118(51), (2021): e2114563118, https://doi.org/10.1073/pnas.2114563118.
    Description: The axial skeleton of tetrapods is organized into distinct anteroposterior regions of the vertebral column (cervical, trunk, sacral, and caudal), and transitions between these regions are determined by colinear anterior expression boundaries of Hox5/6, -9, -10, and -11 paralogy group genes within embryonic paraxial mesoderm. Fishes, conversely, exhibit little in the way of discrete axial regionalization, and this has led to scenarios of an origin of Hox-mediated axial skeletal complexity with the evolutionary transition to land in tetrapods. Here, combining geometric morphometric analysis of vertebral column morphology with cell lineage tracing of hox gene expression boundaries in developing embryos, we recover evidence of at least five distinct regions in the vertebral skeleton of a cartilaginous fish, the little skate (Leucoraja erinacea). We find that skate embryos exhibit tetrapod-like anteroposterior nesting of hox gene expression in their paraxial mesoderm, and we show that anterior expression boundaries of hox5/6, hox9, hox10, and hox11 paralogy group genes predict regional transitions in the differentiated skate axial skeleton. Our findings suggest that hox-based axial skeletal regionalization did not originate with tetrapods but rather has a much deeper evolutionary history than was previously appreciated.
    Description: This research was funded by a Natural Environment Research Council Grant (to J.J.H., J.A.G., and K.E.C.: NE/S000739/1) and a Royal Society University Research Fellowship (UF130182 and URF\R\191007), Royal Society Research Grant (RG140377), and University of Cambridge Sir Isaac Newton Trust Grant (14.23z) (to J.A.G.).
    Keywords: Hox genes ; Regionalization ; Chondrichthyan ; Vertebral column
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chakraborty, A., Ruff, S. E., Dong, X., Ellefson, E. D., Li, C., Brooks, J. M., McBee, J., Bernard, B. B., & Hubert, C. R. J. Hydrocarbon seepage in the deep seabed links subsurface and seafloor biospheres. Proceedings of the National Academy of Sciences of the United States of America, 117(20), (2020): 11029-11037, doi: 10.1073/pnas.2002289117.
    Description: Marine cold seeps transmit fluids between the subseafloor and seafloor biospheres through upward migration of hydrocarbons that originate in deep sediment layers. It remains unclear how geofluids influence the composition of the seabed microbiome and if they transport deep subsurface life up to the surface. Here we analyzed 172 marine surficial sediments from the deep-water Eastern Gulf of Mexico to assess whether hydrocarbon fluid migration is a mechanism for upward microbial dispersal. While 132 of these sediments contained migrated liquid hydrocarbons, evidence of continuous advective transport of thermogenic alkane gases was observed in 11 sediments. Gas seeps harbored distinct microbial communities featuring bacteria and archaea that are well-known inhabitants of deep biosphere sediments. Specifically, 25 distinct sequence variants within the uncultivated bacterial phyla Atribacteria and Aminicenantes and the archaeal order Thermoprofundales occurred in significantly greater relative sequence abundance along with well-known seep-colonizing members of the bacterial genus Sulfurovum, in the gas-positive sediments. Metabolic predictions guided by metagenome-assembled genomes suggested these organisms are anaerobic heterotrophs capable of nonrespiratory breakdown of organic matter, likely enabling them to inhabit energy-limited deep subseafloor ecosystems. These results point to petroleum geofluids as a vector for the advection-assisted upward dispersal of deep biosphere microbes from subsurface to surface environments, shaping the microbiome of cold seep sediments and providing a general mechanism for the maintenance of microbial diversity in the deep sea.
    Description: We wish to thank Jody Sandel as well as the crew of R/V GeoExplorer for collection of piston cores, onboard core processing, sample preservation, and shipment. Cynthia Kwan and Oliver Horanszky are thanked for assistance with amplicon library preparation. We also wish to thank Jayne Rattray, Daniel Gittins, and Marc Strous for valuable discussions and suggestions, and Rhonda Clark for research support. Collaborations with Andy Mort from the Geological Survey of Canada, and Richard Hatton from Geoscience Wales are also gratefully acknowledged. This work was financially supported by a Mitacs Elevate Postdoctoral Fellowship awarded to A.C.; an Alberta Innovates-Technology Futures/Eyes High Postdoctoral Fellowship to S.E.R.; and a Natural Sciences and Engineering Research Council Strategic Project Grant, a Genome Canada Genomics Applications Partnership Program grant, a Canada Foundation for Innovation grant (CFI-JELF 33752) for instrumentation, and Campus Alberta Innovates Program Chair funding to C.R.J.H.
    Keywords: Deep biosphere ; Microbiome ; Dispersal
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...