ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (1,428)
  • 2020-2024  (1,428)
  • 1
    Publication Date: 2021-10-29
    Description: Background: After preterm birth, infants are at high risk for delays in language development. A promising intervention to reduce this risk is represented by the exposure to parental voices through book-reading in Neonatal Intensive Care Units (NICU). This study investigated the possible advantages of book-reading to preterm neonates during their NICU stay on their subsequent language development. Methods: 100 families of preterm infants were recruited. The parents of 55 preterm infants (Reading Group) received a colored picture-book on NICU admission and were supported to read to their neonate as often as possible and to continue after hospital discharge. Forty-five infants (Control Group) were recruited before the beginning of the intervention. Infant language development was assessed with the Hearing and Language quotients of the Griffith Mental Development Scale at the corrected ages of 3, 6, 9, 12, 18 and 24 months. Results: Regardless of group membership, Hearing and Language mean quotients decreased between 9 and 18 months; nevertheless, this decrease was considerably reduced in the Reading group, compared to the Control Group. Conclusions: Reading in NICUs represents a suitable intervention that could positively influence language development and parent-infant relationships in preterm children. The study findings support its implementation as a preventive measure.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-29
    Description: Fault tolerance in IoT systems is challenging to overcome due to its complexity, dynamicity, and heterogeneity. IoT systems are typically designed and constructed in layers. Every layer has its requirements and fault tolerance strategies. However, errors in one layer can propagate and cause effects on others. Thus, it is impractical to consider a centralized fault tolerance approach for an entire system. Consequently, it is vital to consider multiple layers in order to enable collaboration and information exchange when addressing fault tolerance. The purpose of this study is to propose a multi-layer fault tolerance approach, granting interconnection among IoT system layers, allowing information exchange and collaboration in order to attain the property of dependability. Therefore, we define an event-driven framework called FaTEMa (Fault Tolerance Event Manager) that creates a dedicated fault-related communication channel in order to propagate events across the levels of the system. The implemented framework assist with error detection and continued service. Additionally, it offers extension points to support heterogeneous communication protocols and evolve new capabilities. Our empirical results show that introducing FaTEMa provided improvements to the error detection and error resolution time, consequently improving system availability. In addition, the use of Fatema provided a reliability improvement and a reduction in the number of failures produced.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-29
    Description: Due to their low density, magnesium alloys are very appealing for light-weight constructions. However, the use of the most common magnesium alloy, AZ91 (Mg 9 wt.% Al, 1 wt.% Zn), is limited to temperatures below 150 °C due to creep failure. Several alloys with an improved creep resistance have been developed in the past, for example the alloy MRI 230D or Ca-alloyed AZ91 variants. However, there is an ongoing discussion in the literature regarding the mechanisms of the improved creep resistance. One factor claimed to be responsible for the improved creep resistance is the intermetallic phases which form during casting. Another possible explanation is an increased creep resistance due to the formation of precipitates. To gain more insight into the improved creep resistance of MRI 230D, nanoindentation measurements have been performed on the different phases of as-cast, creep-deformed and heat-treated samples of MRI 230D and Ca-alloyed AZ91 variants. These nanoindentation measurements clearly show that the intermetallic phase (IP) of the alloy MRI 230D does not lose strength during creep deformation in contrast to the Ca-alloyed AZ91 variants. High-temperature nanoindentation measurements performed at 200 °C clearly show that the intermetallic phases of the MRI 230D alloy maintain their strength. This is in clear contrast to the Ca-alloyed AZ91 variants, where the IP is significantly softer at 200 °C than at room temperature. Atom probe measurements have been used to gain insight into the differences in terms of chemical composition between the IPs of MRI 230D and the Ca-alloyed AZ91 variants in order to understand the dissimilar behaviour in terms of strength loss with increasing temperature.
    Electronic ISSN: 2075-4701
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-29
    Description: Apart from numerous technical challenges, the transition towards a carbon-neutral energy supply is greatly hindered by limited economic feasibility of renewable energy sources. This results in their slow and bounded penetration in both commercial and residential sectors that are responsible for over 40% of final energy consumption. This paper aims to demonstrate that combined application of sophisticated planning methodologies at building-level and presents incentive mechanisms for renewables that can result in prosumers, featuring hybrid renewable energy systems (HRES), with economic performance comparable to that of conventional energy systems. The presented research enhances existing planning methodologies by integrating appliance-level demand side management into the decision process and investigates its effect on the planning problem. Moreover, the proposed methodology features an innovative and holistic approach that simultaneously assess electrical and thermal domain in both an isolated and grid-connected context. The analyzed hybrid system consists of solar photovoltaic, wind turbine and battery with thermal supply featuring solar thermal collector and a ground-source heat pump. Overall optimization problem is modeled as a mixed-integer linear program, while ranking of all feasible alternatives is made by the multicriteria decision-making algorithm against several technological, economic, and environmental criteria. A real-life scenario of energy system retrofit for a building in the United Kingdom was employed to demonstrate overall cost savings of 12% in the present market and regulation context.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-10-29
    Description: A simple one-pot approach was developed for the synthesis of furan-2(5H)-one derivative containing indole fragments. This method includes the telescoped multicomponent reaction of indole, 4-methoxyphenylglyoxal, and Meldrum’s acid. The synthetic utility of the prepared furan-2(5H)-one was demonstrated by condensation with 4-methoxybenzaldehyde. The advantages of this method include the employment of readily accessible starting materials, atom economy, process simplicity, and the easy isolation of the target products. The structure of the synthesized furanones was confirmed by 1H and 13C-NMR spectroscopy and high-resolution mass spectrometry with electrospray ionization (ESI-HRMS).
    Electronic ISSN: 1422-8599
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-10-29
    Description: Stand structure and topography are important factors affecting forest vegetation carbon density (FVCD). Revealing the interaction mechanisms between stand structure and topography on FVCD is of great significance for enhancing forest vegetation carbon storage and achieving regional carbon neutrality. Based on stratified sampling, systematic distribution and forest continuous inventory sample plots in Jiangxi province, the variation characteristics of FVCD and its correlations with stand structure and topographic factors were studied. The results are as follows: (1) The average FVCD in Jiangxi province was 44.23 Mg/ha, which was dominated by the carbon density of the arbor layer, accounting for about 81.39% of the total forest—far lower than the average level of global FVCD, which proved that the forest in Jiangxi province was dominated by middle-age and young forests with low carbon density, and also showed that the potential for forest vegetation carbon storage in Jiangxi province was huge. (2) Except for vegetation carbon densities of shrub and herb layers, the vegetation carbon densities of other forest layers in Jiangxi province were significantly different among different forest types. Volume per unit area was the most important factor affecting the vegetation carbon densities of arbor and total forest, and vegetation carbon density–volume models of the main forests were built for vegetation carbon density calculation in Jiangxi province. (3) The vegetation carbon densities of arbor layer, snag and log layer, and total forest increased significantly with increases in elevation and slope. Except for the shrub layer and herb layer, the vegetation carbon densities of the other layers and the total forest had extremely significant or significant differences between slope position gradients—indicating that the effect of topography on FVCD in Jiangxi province was significant, mainly through influencing of forest distribution and human disturbance intensity.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-10-29
    Description: Gut microbiota, a major contributor to human health, is influenced by physical activity and diet, and displays a functional cross-talk with skeletal muscle. Conversely, few data are available on the impact of hypoactivity, although sedentary lifestyles are widespread and associated with negative health and socio-economic impacts. The study aim was to determine the effect of Dry Immersion (DI), a severe hypoactivity model, on the human gut microbiota composition. Stool samples were collected from 14 healthy men before and after 5 days of DI to determine the gut microbiota taxonomic profiles by 16S metagenomic sequencing in strictly controlled dietary conditions. The α and β diversities indices were unchanged. However, the operational taxonomic units associated with the Clostridiales order and the Lachnospiraceae family, belonging to the Firmicutes phylum, were significantly increased after DI. Propionate, a short-chain fatty acid metabolized by skeletal muscle, was significantly reduced in post-DI stool samples. The finding that intestine bacteria are sensitive to hypoactivity raises questions about their impact and role in chronic sedentary lifestyles.
    Electronic ISSN: 2072-6643
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-10-29
    Description: This study presents a 2-D lidar odometry based on an ICP (iterative closest point) variant used in a simple and straightforward platform that achieves real-time and low-drift performance. With a designated multi-scale feature extraction procedure, the lidar cloud information can be utilized at multiple levels and the speed of data association can be accelerated according to the multi-scale data structure, thereby achieving robust feature extraction and fast scan-matching algorithms. First, on a large scale, the lidar point cloud data are classified according to the curvature into two parts: smooth collection and rough collection. Then, on a small scale, noise and unstable points in the smooth or rough collection are filtered, and edge points and corner points are extracted. Then, the proposed tangent-vector-pairs based on edge and corner points are applied to evaluate the rotation term, which is significant for producing a stable solution in motion estimation. We compare our performance with two excellent open-source SLAM algorithms, Cartographer and Hector SLAM, using collected and open-access datasets in structured indoor environments. The results indicate that our method can achieve better accuracy.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-10-29
    Description: In the single-polyelectrolyte aqueous phase separation (APS) approach, membranes are prepared by precipitating a weak polyelectrolyte from a concentrated aqueous solution using a pH switch. This has proven to be a versatile and more sustainable method compared to conventional approaches as it significantly reduces the use of organic solvents. Poly(styrene-alt-maleic acid) (PSaMA) is a polymer that has been extensively investigated for APS and has been the basis for both open and dense membranes with good performances. These membranes are chemically crosslinked and, in this work, we further investigated ultrafiltration (UF) and nanofiltration (NF) membranes prepared with PSaMA for their stability in various organic solvents and under different pH conditions. It was shown that these membranes had stable performances in both isopropanol (IPA) and toluene, and a slightly reduced performance in N-methyl-2-pyrollidone (NMP). However, PSaMA did not perform well as a selective layer in these solvents, indicating that the real opportunity would be to use the UF-type PSaMA membranes as solvent-stable support membranes. Additionally, the membranes proved to be stable in an acidic-to-neutral pH regime (pH 2–7); and, due to the pH-responsive nature of PSaMA, for the NF membranes, a pH-dependent retention of Mg2+ and SO42− ions was observed and, for the UF membranes, a strong responsive behavior was observed, where the pH can be used to control the membrane permeability. However, long-term exposure to elevated pH conditions (pH 8–10) resulted in severe swelling of the NF membranes, resulting in defect formation, and compaction of the UF membranes. For the UF membranes, this compaction did prove to be reversible for some but not all of the membrane samples measured. These results showed that in aqueous systems, membranes prepared with PSaMA had interesting responsive behaviors but performed best at neutral and acidic pH values. Moreover, the membranes exhibited excellent stability in the organic solvents IPA and toluene
    Electronic ISSN: 2077-0375
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-10-29
    Description: The electric power industry sector has become increasingly aware of how counterproductive voltage sag affects distribution network systems (DNS). The voltage sag backfires disastrously at the demand load side and affects equipment in DNS. To settle the voltage sag issue, this paper achieved its primary purpose to mitigate the voltage sag based on integrating a hydrogen fuel cell (HFC) with the DNS using a distribution static synchronous compensator (D-STATCOM) system. Besides, this paper discusses the challenges and opportunities of D-STATCOM in DNS. In this paper, using HFC is well-designed, modeled, and simulated to mitigate the voltage sag in DNS with a positive impact on the environment and an immediate response to the issue of the injection of voltage. Furthermore, this modeling and controller are particularly suitable in terms of cost-effectiveness as well as reliability based on the adaptive network fuzzy inference system (ANFIS), fuzzy logic system (FLC), and proportional–integral (P-I). The effectiveness of the MATLAB simulation is confirmed by implementing the system and carrying out a DNS connection, obtaining efficiencies over 94.5% at three-phase fault for values of injection voltage in HFC D-STATCOM using a P-I controller. Moreover, the HFC D-STATCOM using FLC proved capable of supporting the network by 97.00%. The HFC D-STATCOM based ANFIS proved capable of supporting the network by 98.00% in the DNS.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...