ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (302)
  • GFZ Data Services  (301)
  • Deutsches GeoForschungsZentrum GFZ  (1)
  • 2020-2023  (302)
  • 1
    Publication Date: 2022-01-03
    Description: Abstract
    Description: This dataset contains processed (downsampled, rotated to local Äspö96 coordinate system, cut) broadband seismograms from two seismometers (Trillium Compact 120s), showing long-period transients on the horizontal components recorded during multiple hydraulic fracturing experiments in the Äspö Hard Rock Laboratory (HRL). Furthermore, the dataset contains extracted tilt time series and the injection parameters of the experiment to allow reproducing the results of Niemz et al. (2021). The seismic waveforms were recorded during meter-scale hydraulic fracturing experiments in the Äspö Hard Rock Laboratory (HRL) in Sweden (Zang et al., 2017). This dataset only contains a subset of the data recorded during the experiments, monitored by a complementary monitoring system. The two seismometers contained in this dataset (A89 and A8B) were located in galleries adjacent/close to the injection borehole (see Fig. 2 in Niemz et al., 2021). The experiments were conducted at the 410m-depth level of the Äspö HRL. Each of the six experiments (HF1 to HF6) consisted of multiple stages with an initial fracturing and three to five refracturing stages (see injection parameters contained in this dataset). The six injection intervals were located along a 28m-long injection borehole. The borehole was drilled sub-parallel to the minimum horizontal compressive stress direction. The distance of the two seismometers to the injection intervals in the injection borehole is between 17 m and 29 m for sensor A89 and 52 m to 72 m for sensor A8B. A89 and A8B correspond to BB1 and BB2 in Niemz et al., 2021. For more details regarding the experimental setup, see Zang et al., 2017; Niemz et al., 2020; and Niemz et al., 2021. The records of the two seismometers show long-period transients that correlate with the injection parameters. These transients are the response of the seismometers to a tilting of the gallery floor. The extracted tilt time series provide independent insight into the fracturing process during the hydraulic stimulations (Niemz et al., 2021).
    Keywords: Tilt ; Äspö Hardrock Laboratory ; Broadband seismometers ; Hydraulic fracturing ; energy 〉 energy type 〉 non-conventional energy 〉 geothermal energy ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers 〉 SEISMOMETERS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-05
    Description: Abstract
    Description: The Central Andean orogeny is caused by the subduction of the Nazca oceanic plate beneath the South-American continental plate. In Particular, the Southern Central Andes (SCA, 27°-40°S) are characterized by a strong N-S and E-W variation in the crustal deformation style and intensity. Despite being the surface geology relatively well known, the information on the deep structure of the upper plate in terms of its thickness and density configurations is still scarcely constrained. Previous seismic studies have focused on the crustal structure of the northern part of the SCA (~27°-33°S) based upon 2D cross-sections, while 3D crustal models centred on the South-American or the Nazca Plate have been published with lower resolution. To gain insight into the present-day state of the lithosphere in the area, we derived a 3D model that is consistent with both the available geological and seismic data and with the observed gravity field. The model consists on a continental plate with sediments, a two-layer crust and the lithospheric mantle being subducted by an oceanic plate. The model extension covers an area of 700 km x 1100 km, including the orogen, the forearc and the forelands.
    Description: Methods
    Description: Different data sets were integrated to derive the lithospheric features: - We used the global relief model of ETOPO1 (Amante and Eakins 2009) for the topography and bathymetry. - The sub-surface structures were defined by integrating seismically constrained models, including the South-American crustal thickness of Assumpção et al. (2013; model A; 0.5 degree resolution), the sediment thickness of CRUST1 (Laske et al. 2013) and the slab geometry of SLAB2 (Hayes et al. 2018). - Additionally, we included seismic reflection and refraction profiles performed on the Chile margin (Araneda et al. 2003; Contreras-Reyes et al. 2008, 2014, 2015; Flueh et al. 1998; Krawzyk et al. 2006; Moscoso et al. 2011; Sick et al. 2006; Von Huene et al. 1997). - Besides, we used sediment thickness maps from the intracontinental basin database ICONS (6 arc minute resolution, Heine 2007) and two oceanic sediment compilations: one along the southern trench axis (Völker et al. 2013) and another of global-scale (GlobSed; Straume et al. 2019). To build the interfaces between the main lithospheric features, we compiled and interpolated these datasets on a regular grid with a surface resolution of 25 km. For that purpose, the convergent algorithm of the software Petrel was used. We assigned constant densities within each layer, except for the lithospheric mantle. In this case, we implemented a heterogeneous distribution by converting s-wave velocities from the SL2013sv seismic tomography (Schaeffer and Lebedev 2013) to densities. The python tool VelocityConversion was used for the conversion (Meeßen 2017). To further constrain the crustal structure of the upper plate, a gravity forward modelling was carried out using IGMAS+ (Schmidt et al. 2010). The gravity anomaly from the model (calculated gravity) was compared to the free-air anomaly from the global gravity model EIGEN-6C4 (observed gravity; Förste et al 2014; Ince et al. 2019). Subsequently, the crystalline crust of the upper plate was split vertically into two layers of different densities. We inverted the residual between calculated and observed gravity to compute the depth to the interface between the two crustal layers. For the inverse modelling of the gravity residual, the Python package Fatiando a Terra was used (Uieda et al. 2013) For each layer, the depth to the top surface, thickness and density can be found as separate files. All files contain identical columns: - Northing as "X Coord (UTM zone 19S)"; - Easting as "Y Coord (UTM zone 19S)"; - depth to the top surface as "Top (m.a.s.l)" and - thickness of each layer as "Thickness (m)". The header ‘Density’ indicates the bulk density of each unit in kg/m3. For the oceanic and continental mantle units, a separate file is provided with a regular grid of the density distribution with a lateral resolution of 8 km x 9 km and a vertical resolution of 5 km. The containing columns are: Northing as "X Coord (UTM zone 19S)"; Easting as "Y Coord (UTM zone 19S)"; depth as "Depth (m.a.s.l)" and density as "Density (kg/m3)"
    Keywords: Lithosphere ; Gravity Modelling ; Andes ; EARTH SCIENCE ; EARTH SCIENCE 〉 LAND SURFACE 〉 TOPOGRAPHY 〉 TOPOGRAPHICAL RELIEF ; EARTH SCIENCE 〉 OCEANS 〉 BATHYMETRY/SEAFLOOR TOPOGRAPHY 〉 BATHYMETRY ; EARTH SCIENCE 〉 SOLID EARTH ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC LANDFORMS 〉 MOUNTAINS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC PROCESSES 〉 SUBDUCTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 SEDIMENTS ; EARTH SCIENCE SERVICES 〉 MODELS 〉 GEOLOGIC/TECTONIC/PALEOCLIMATE MODELS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-05
    Description: Abstract
    Description: The southern Central Andes (SCA, 29°S-39°S) are characterized by the subduction of the oceanic Nazca Plate beneath the continental South American Plate. One striking feature of this area is the change of the subduction angle of the Nazca Plate between 33°S and 35°S from the Chilean-Pampean flat-slab zone (〈 5° dip) in the north to a steeper sector in the south (~30° dip). Subduction geometry, tectonic deformation, and seismicity at this plate boundary are closely related to the lithospheric strength in the upper plate. Despite recent research focused on the compositional and thermal characteristics of the SCA lithosphere, the lithospheric strength distribution remains largely unknown. Here we calculated the long-term lithospheric strength on the basis of an existing 3D model describing the variation of thickness, density and temperature of geological units forming the lithosphere of the SCA. The model consists of a continental plate with sediments, a two-layer crust and the lithospheric mantle being subducted by an oceanic plate. The model extension covers an area of 700 km x 1100 km, including the orogen (i.e. magmatic arc, main orogenic wedge), the forearc and the foreland, and it extents down to 200 km depth.
    Description: Methods
    Description: To compute the lithospheric strength distribution in the SCA, we used the geometries and densities of the units forming the 3D lithospheric scale model of Rodriguez Piceda et al. (2020a,b). The units considered for the rheological calculations are (1) oceanic and continental sediments; (3) upper continental crystalline crust; (4) lower continental crystalline crust; (5) continental lithospheric mantle (6) shallow oceanic crust; (7) deep oceanic crust; (8) oceanic lithospheric mantle; and (9) oceanic sub-lithospheric mantle. The thermal field was derived from a temperature model of the SCA (Rodriguez Piceda et al. under review) covering the same region as the structural model of Rodriguez Piceda et al. (2020a). To calculate the temperature distribution in the SCA, the model volume was split into two domains: (1) a shallow domain, including the crust and uppermost mantle to a depth of ~50 km below mean sea level (bmsl), where the steady-state conductive thermal field was calculated using as input the 3D structural and density model of the area of Rodriguez Piceda et al. (2020b, a) and the finite element method implemented in GOLEM (Cacace and Jacquey 2017); (2) a deep domain between a depth of ~50 and 200 km bmsl, where temperatures were converted from S wave seismic velocities using the approach by Goes et al. (2000) as implemented in the python tool VelocityConversion (Meeßen 2017). Velocities from two alternative seismic tomography models were converted to temperatures (Assumpção et al. 2013; Gao et al. 2021). A detailed description of the method can be found in Rodriguez Piceda et al. (under review). The yield strength of the lithosphere (i.e. maximum differential stress prior to permanent deformation) was calculated using the approach by Cacace and Scheck-Wenderoth (2016). We assumed brittle-like deformation as decribed by Byerlee’s law (Byerlee 1968) and steady state creep as the dominant form of viscous deformation. Low-temperature plasticity (Peierls creep) at differential stresses greater than 200 MPa was also included (Goetze et al. 1978; Katayama and Karato 2008). In addition, effective viscosities were computed from a thermally activated power-law (Burov 2011) We assigned rheological properties to each unit of the model on the basis of laboratory measurements (Goetze and Evans 1979; Ranalli and Murphy 1987; Wilks and Carter 1990; Gleason and Tullis 1995; Hirth and Kohlstedt 1996; Afonso and Ranalli 2004). These properties were chosen, in turn, based on the dominant lithology of each layer derived from seismic velocities and gravity-constrained densities. More methodological details and a table with the rheological properties are depicted in Rodriguez Piceda et al. (under review). The rheological results using the thermal model derived from the seismic tomography of Assumpção et al. (2013) and Gao et al. (2021) can be found in Rodriguez Piceda et al. (under review, under review), respectively
    Description: Other
    Description: Two comma-separated files can be found with the calculated lithospheric temperature, strength and effective viscosity for all the points in the model (2,274,757). These points are located at the top surface of each model unit. Therefore, the vertical resolution of the model is variable and depends on the thickness and refinement of the structural modelled units. SCA_RheologicalModel_V01.csv corresponds to the results using the mantle thermal field from the tomography by Assumpção et al. (2013) and presented in Rodriguez Piceda et al. (under review). SCA_RheologicalModel_V02.csv includes the results using the mantle thermal field of Gao et al. (2021) and presented in Rodriguez Piceda et al. (under review). Each of these files contains the following columns: -Northing as " X COORD (m [UTM Zone 19S]) " -Easting as " Y COORD (m [UTM Zone 19S]) " -Depth to the top surface as " Z COORD (m.a.s.l.)" -Temperature in degree Celsius as " TEMP (deg. C) " -Yield strength in MPa as “STRENGTH (MPa)” -Effective viscosity in base-10 logarithm of Pa*s as “EFF VISCOSITY (log10(Pa*s))” The dimensions of the model is 700 km x 1100 km x 200 km. The horizontal resolution is 5 km, while the vertical resolution depends on the thickness of the structural units.
    Keywords: Lithosphere ; Rheology ; Subduction ; Andes ; EARTH SCIENCE ; EARTH SCIENCE 〉 SOLID EARTH ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC LANDFORMS 〉 MOUNTAINS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC PROCESSES 〉 SUBDUCTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRESS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-01-05
    Description: Abstract
    Description: The Central Andean orogen formed as a result of the subduction of the oceanic Nazca plate beneath the continental South-American plate. In the southern segment of the Central Andes (SCA, 29°S-39°S), the oceanic plate subducts beneath the continental plate with distinct dip angles from north to south. Subduction geometry, tectonic deformation, and seismicity at this plate boundary are closely related to lithospheric temperature distribution in the upper plate. Previous studies provided insights into the present-day thermal field with focus on the surface heat flow distribution in the orogen or through modelling of the seismic velocity distribution in restricted regions of the SCA as indirect proxy of the deep thermal field. Despite these recent advances, the information on the temperature distribution at depth of the SCA lithosphere remains scarcely constrained. To gain insight into the present-day thermal state of the lithosphere in the region, we derived the 3D lithospheric temperature distribution from inversion of S-wave velocity to temperature and calculations of the steady state thermal field. The configuration of the region – concerning both, the heterogeneity of the lithosphere and the slab dip – was accounted for by incorporating a 3D data-constrained structural and density model of the SCA into the workflow (Rodriguez Piceda et al. 2020a-b). The model consists on a continental plate with sediments, a two-layer crust and the lithospheric mantle being subducted by an oceanic plate. The model extension covers an area of 700 km x 1100 km, including the orogen (i.e. magmatic arc, main orogenic wedge), the forearc and the foreland, and it extents down to 200 km depth.
    Description: Methods
    Description: To predict the temperature distribution in the SCA, the model volume was subdivided into two domains: (1) a shallow domain, including the crust and uppermost mantle to a depth of ~50 km below mean sea level (bmsl), where the steady-state conductive thermal field was calculated using as input the 3D structural and density model of the area (Rodriguez Piceda et al., 2020a-b); (2) a deep domain between a depth of ~50 and 200 km bmsl, where temperatures were converted from S wave seismic velocities (Assumpção et al., 2013) using the approach by Goes et al. (2000) as implemented in the python tool VelocityConversion (Meeßen 2017). The 3D model of Rodriguez Piceda et al. (2020) consists of the following layers: (1) water; (2) oceanic sediments; (3) continental sediments; (4) upper continental crystalline crust; (5) lower continental crystalline crust; (6) continental lithospheric mantle (7) shallow oceanic crust; (8) deep oceanic crust; (9) oceanic lithospheric mantle; and (10) oceanic sub-lithospheric mantle. For the computation of temperatures in the shallow domain, three main modifications were made to the 3D model of Rodriguez Piceda et al. (2020a-b). First, we removed the water layer thus considering the topography/bathymetry as the top of the model. Second, the horizontal resolution was increased to 5 km and, third, the layers were vertically refined by a factor of 3 to 32. We assigned constant thermal properties (bulk conductivity λ and radiogenic heat production S) to each layer of the model according to each lithology (Alvarado et al. 2007, 2009; Ammirati et al. 2013, 2015, 2018; Araneda et al., 2003; Brocher, 2005; Čermák and Rybach, 1982; Contreras-Reyes et al., 2008; Christensen & Mooney, 1995; Gilbert et al., 2006; Hasterok & Chapman, 2011; He et al., 2008; Marot et al., 2014, Pesicek et al., 2012; Rodriguez Piceda et al., 2020; Scarfi & Barbieri, 2019; Vilà et al.,2010; Wagner et al., 2005; Xu et al., 2004). The steady-state conductive thermal field in the shallow domain was calculated applying the Finite Element Method as implemented in the software GOLEM (Cacace & Jacquey, 2017; Jacquey & Cacace, 2017). For the computation, we assigned fixed temperatures along the top and base of the model as thermal boundary conditions. The upper boundary condition was set at the topography/bathymetry and it is the temperature distribution from the ERA-5 land data base (Muñoz Sabater, 2019). The lower boundary condition was set at a constant depth of 50 km bmsl for areas where the Moho is shallower than 50 km bmsl and at the Moho depth proper where this interface is deeper than the abovementioned threshold. The temperature distribution at this boundary condition was calculated from the conversion of S-wave velocities to temperatures (Assumpção et al., 2013).
    Keywords: Lithosphere ; Andes ; Subduction ; Thermal Model ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC LANDFORMS 〉 MOUNTAINS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC PROCESSES 〉 SUBDUCTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS 〉 GEOTHERMAL TEMPERATURE ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS 〉 GEOTHERMAL TEMPERATURE 〉 TEMPERATURE PROFILES ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 SEDIMENTS ; EARTH SCIENCE SERVICES 〉 MODELS 〉 GEOLOGIC/TECTONIC/PALEOCLIMATE MODELS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-18
    Description: Abstract
    Description: The DFG Priority Program 1803 “EarthShape” (www.earthshape.net) investigates Earth surface shaping by biota. As part of this project, we present Light Detection and Ranging (LiDAR) data of land surface areas for the four core research sites of the project. The research sites are located along a latitudinal gradient between ~26 °S and ~38 °S in the Chilean Coastal Cordillera. From north to south, the names of these sites are: National Park Pan de Azúcar; Private Reserve Santa Gracia; National Park La Campana; and National Park Nahuelbuta. The three datasets contain raw 3D point cloud data captured from an airborne LiDAR system, and the following derivative products: a) digital terrain models (DTM, sometimes also referred to as DEM [digital elevation model]) which are (2.5D) raster datasets created by rendering only the LiDAR returns which are assumed to be ground/bare-earth returns and b) digital surface models (DSM) which are also 2.5D raster datasets produced by rendering all the returns from the top of the Earth’s surface, including all objects and structures (e.g. buildings and vegetation). The LiDAR data were acquired in 2008 (southernmost Nahuelbuta [NAB] catchment), 2016 (central La Campana [LC] catchment) and 2020 (central Santa Gracia [SGA] catchment). Except for Nahuelbuta (data already was available from the data provider from a previous project), the flights were carried out as part of the "EarthShape" project. The LiDAR raw data (point cloud/ *.las files) were compressed, merged (as *.laz files) and projected using UTM 19 S (UTM 18 S for the southernmost Nahuelbuta catchment, respectively) and WGS84 as coordinate reference system. A complementary fourth dataset for the northernmost site in the National Park Pan de Azúcar, derived from Uncrewed Aerial Vehicle (UAV) flights and Structure from Motion (SfM) photogrammetry, is expected to be obtained during the first half of 2022 and will be added to the above data set.
    Description: Other
    Description: The DFG Priority Program 1803 "EarthShape - Earth Surface Shaping by Biota" (2016-2022) explored between scientific disciplines and includes geoscientists and biologists to study from different viewpoints the complex question how microorganisms, animals, and plants influence the shape and development of the Earth’s surface over time scales from the present-day to the young geologic past. All study sites are located in the north-to-south trending Coastal Cordillera mountains of Chile, South America. These sites span from the Atacama Desert in the north to the Araucaria forests approximately 1300 km to the south. The site selection contains a large ecological and climate gradient ranging from very dry to humid climate conditions. For more information visit: www.earthshape.net
    Keywords: 3D point cloud ; LiDAR scanner ; Elevation Models ; EarthShape ; Chile ; Coastal Cordillera ; Private Reserve Santa Gracia ; National Park La Campana ; National Park Nahuelbuta ; Earth Remote Sensing Instruments 〉 Active Remote Sensing 〉 Altimeters 〉 Lidar/Laser Altimeters 〉 AIRBORNE LASER SCANNER ; EARTH SCIENCE 〉 LAND SURFACE 〉 TOPOGRAPHY 〉 TERRAIN ELEVATION ; EARTH SCIENCE 〉 LAND SURFACE 〉 TOPOGRAPHY 〉 TOPOGRAPHICAL RELIEF ; EARTH SCIENCE 〉 SPECTRAL/ENGINEERING 〉 LIDAR ; EARTH SCIENCE SERVICES 〉 MODELS 〉 LAND SURFACE MODELS ; Models/Analyses 〉 DEM ; radiation 〉 laser
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-01-18
    Description: Abstract
    Description: The data presented here were produced to study glacial and glacio-fluvial catchment erosion using 'tracer thermochronology' where detrital downstream samples can be used to infer the source elevation sectors of sediments when integrated with known surface bedrock ages from the catchment. For the first time, our study used the zircon (U-Th)/He (ZHe) method as tracer thermochronometer. The samples come from the Leones Valley at the northeastern flank of the Northern Patagonian Icefield, Chile (46.7° S) This data set comprises ZHe analytical results from (i) six detrital samples of different depositional age and grain size (622 single-grain analyses in total), and (ii) two previously analyzed (Andrić-Tomašević et al., 2021) bedrock samples (22 single-grain analyses in total), as well as grain size measurements and lithology identification of two of the detrital samples (two pebble samples with 262 and 211 pebbles, respectively). Data are provided in 10 tab-delimited text files. The full description of the data and methods is provided in the data description file.
    Description: Methods
    Description: Six detrital samples were collected along ~19 km of the Leones Valley at the northeastern flank of the Northern Patagonian Icefield, Chile. Sample coordinates are presented in Table 1. Samples include one sand- to pebble-sized sample from the ~2.5–1.1 ka (Harrison et al., 2008) Leones terminal moraine that dams Lago Leones, four modern trunk river samples from ~7.5 km and ~19 km downstream of the moraine, where at each location a sand and a pebbles sample was collected separately, and one modern tributary river sand sample from ~13.5 km downstream of the moraine. The moraine sample is a mixture of mainly very fine to coarse sand and granules with some fine to coarse pebbles (grain sizes according to the classification of Wentworth, 1922) from four locations at the lakeward flank of the ~135-m-high and 2-km-wide moraine. The sample material was collected from beneath coarser material at the surface of the moraine and was in total ~16 kg. Sand and pebble samples of the modern river were collected as mixtures from several locations along tens of meters of point bars or sand/pebble bars within the river. Sand samples were ~8 kg each and the two pebble samples contained 211 and 262 individual pebbles, respectively, of ~2–4 cm diameter (Table S1). The pebble samples are representative of the pebble lithologies present at each sampling location, but not of the pebble grain sizes present at each location. The percentage of pebble lithologies present was estimated and then pebbles of the same size range were collected one-by-one. We did not conduct point-counting. Sampling Measurements of pebble size and lithology identification Pebbles were measured along three axes (shortest, intermediate, longest) with a caliper, then their lithology was identified where possible. Data can be found in Table S1. Zircon (U-Th)/He thermochronometry The bulk moraine sample was processed for mineral separation by crushing, milling, and sieving to the 63–250 µm grain size fraction before density and magnetic separation at the University of Potsdam, Germany. The modern river sand samples were sieved to the 63–250 µm fraction before density and magnetic mineral separations at the University of Tübingen, Germany. After the measurements of pebble size and lithology identification, each pebble sample was crushed as bulk sample and sieved to the 63–250 µm fraction before density and magnetic mineral separation at the University of Tübingen. All samples' mineral separates were picked for suitable zircons at 256X magnification under reflected and transmitted light at a binocular microscope at the University of Tübingen. Selection criteria for bedrock zircons were their transparency, no or only few small inclusions, no fractures or broken parts, idiomorphic crystal habit, grain diameters of 〉80 µm, and similar size of crystals for each sample. Zircon quality and abundance was high in bedrock samples. Zircon selection in detrital samples aims at selecting a representative zircon population for measurements to avoid bias. We picked ~100 grains of representative sizes, crystal habits, and colors of each sample. Zircon abundance and quality was high in all detrital samples. Selected zircons were individually packed in niobium tubes and measured in an Alphachron™ helium line at the University of Tübingen. Subsequently, concentrations of uranium and thorium were measured by isotope dilution inductively-coupled plasma mass spectrometry (ID-ICP-MS) at the University of Tübingen. For this, zircons were first spiked with a 233U and 230 Th spike solution, dried, and then digested in a two-step high-pressure digestion procedure. Final solutions of 5% HNO3 + 0.5% HF were measured with a Thermo Fisher Scientific iCAP Qc quadrupole ICP-MS. Analytical procedures were developed by Stübner et al. (2016) and analytical details and instrument settings are reported in their supplementary material. Alpha-ejection correction (Ft-correction) of helium measurements was performed after Glotzbach et al. (2019) and ZHe age calculations followed Meesters and Dunai (2005). Grain masses and sphere-equivalent radii (ser) were determined from numerically determined grain geometries (after Glotzbach et al., 2019) and assumed densities (see description of data tables).
    Keywords: tracer thermochronolgy ; glacial erosion ; grain size fractions ; Leones Glacier ; Leones River ; equilibrium line altitude ; zircon (U-Th)/He dating ; EARTH SCIENCE 〉 CRYOSPHERE 〉 GLACIERS/ICE SHEETS 〉 GLACIERS ; EARTH SCIENCE 〉 LAND SURFACE 〉 EROSION/SEDIMENTATION 〉 EROSION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPIC AGE ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 SEDIMENTS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-01-18
    Description: Abstract
    Description: The DFG funded DeepEarthshape project within the SPP1803 EarthShape (second phase) combines several geoscientific methods and approaches to study the weathering zone in detail in dependence of climate conditions. Projects of the first phase have shown that the weathering zone is much deeper than expected, so that the weathering front was never encountered in the excavated soil pits. At depth of 1 – 2 m appreciable amounts of microbial biomass and DNA counts were encountered. It was further found that bacteria and archaea colonizing rock surfaces are close relatives to those from deeper soil zones. Because we do not know a) the depth of weathering; b) the process advancing it; c) whether this advance is driven by water, gases, and/or biological activity and concentrated along faults; d) whether this zone presents a habitat and interacts with the surface biosphere, we have designed a drilling campaign at all four study sites for joint geochemical, biogeochemical and microbiological exploration and a geophysical campaign for imaging the depth and physical properties of the critical zone. The principle hypotheses of the DeepEarthshape projects are: 1) The advance of the weathering front at depth is a recent process that is linked to climate and coupled with erosion at the surface through a biogeochemical feedback 2) Microbial activity in the deep regolith that advances weathering is fuelled by young organic matter. The four study sites are distributed along the coast of Chile to have a similar geological setting at one hand but different climatic conditions. Here we present the logging data of the first geophysical borehole survey which took place at Santa Gracia, 40 km NE of La Serena (Coquimbo Region, Chile). The data were acquired on the 2nd of April 2019 between . The borehole logging was conducted by COMPROBE. The vertical borehole reached down to 87.2 m depth and had a diameter (PQ) of 83.5 mm.
    Description: Other
    Description: The Acoustic Televiewer data are freely accessible now in .dlis and PDF formats. The original data files are embargoed until the 30 June 2022.
    Keywords: geophysical borehole logging ; televiewer ; Full seismic wave fields ; electrical resistivity ; gamma ray ; spontaneous potential ; single point resistance ; seismic p wave velocities ; seismic s wave velocities ; In Situ/Laboratory Instruments 〉 Recorders/Loggers 〉 WELL LOGGING TOOLS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-01-18
    Description: Abstract
    Description: The simulations of the end‐Cretaceous climate and the effects of the impact are carried out with a coupled climate model consisting of a modified version of the ocean general circulation model MOM3, a dynamic/thermodynamic sea ice model, and a fast statistical‐dynamical atmosphere model. Our impact simulations are based on a climate simulation of the end‐Cretaceous climate state using a Maastrichtian (70 Ma) continental configuration. The solar constant is scaled to 1354 W/m2, based on the present‐day solar constant of 1361 W/m2 and a standard solar model. A baseline simulation with 500 ppm of atmospheric CO2 and a sensitivity experiment at 1000 ppm CO2 concentration. The impact is assumed to release 100 Gt sulfur and 1400 Gt CO2. We simulate stratospheric residence times of 2.1 y, 4.3 y and 10.6 y. More information about the model can be found in the manuscript (https://doi.org/10.1002/2016GL072241).
    Description: Methods
    Description: The data is model output from the coupled ocean-atmosphere model CLIMBER3alpha which models climate globally on a 3.75°x3.75° (ocean) and 22.5° (longitude) x 7.5° (latitude) (atmosphere) grid.
    Keywords: Aerosols and particles ; Abrupt/rapid climate change ; Paleoecology ; Impact phenomena ; Cretaceous ; K-Pg boundary ; climate model simulations ; Chicxulub impact ; EARTH SCIENCE 〉 PALEOCLIMATE ; EARTH SCIENCE SERVICES 〉 MODELS 〉 COUPLED CLIMATE MODELS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-01-19
    Description: Abstract
    Description: Natural gas hydrates encase predominantly methane, but also higher hydrocarbons as well as CO2 and H2S. The formation of gas hydrates from a changing gas mixture, either due to the preferred incorporation of certain components into the hydrate phase or an inadequate gas supply, may lead to significant changes in the composition of the resulting hydrate phase. To determine the overall composition of a hydrate phase during the hydrate formation process, Raman spectroscopy is regarded as a non-destructive and powerful tool. This technique enables to distinguish between guest molecules in the free gas or liquid phase, encased into a clathrate cavity or dissolved in an aqueous phase, therefore providing time-resolved information about the guest molecules during the hydrate formation process. Experiments were carried out at the Micro-Raman Spectroscopy Laboratory, GFZ. Mixed gas hydrates were synthesized in a high-pressure cell from pure water and a specific gas flow containing CH4, C2H6, C3H8, iso-C4H10 and n-C4H10 at 274 K and 2.20 MPa. Three potential different gas supply conditions were selected for the formation of mixed gas hydrates, namely an open system (test scenario 1) with a continuous gas supply, a closed system (test scenario 2) with no gas supply after initial pressurization with the gas mixture, and a semi-closed system (test scenario 3) with only an incoming gas but a disrupted outlet. In situ Raman spectroscopic measurements and microscopic observations were applied to record changes in both gas and hydrate compositions over the whole formation period until it reached a steady state. In all three test scenarios, 12 hydrate crystals were selected and continuously characterized for 5 days with single point Raman measurements to record the formation process of mixed gas hydrates. Each test scenario was repeated for 3 times, therefore resulting in 9 separate experimental tests. This dataset encompasses raw Raman spectra of the 9 experimental tests (.txt files) which contained Raman shifts and the respective measured intensities. Each Raman spectrum was fitted to Gauss/Lorentz function after an appropriate background correction to estimate the band areas and positions (Raman shift). The Raman band areas were then corrected with wavelength-independent cross-sections factors for each specific component. The concentration of each guest molecule in the hydrate phase / gas phase was given as mol% in separate spreadsheet for three different test scenarios. Further details on the analytical setup, experimental procedures and composition calculation are provided in the following sections.
    Description: Methods
    Description: Mixed gas hydrates were synthesized in a custom-made pressure cell in the laboratory from water and a certified gas mixture containing CH4, C2H6, C3H8, iso-C4H10, and n-C4H10. Initially, the sample cell was filled with 150 μl deionized and degassed water, carefully sealed and pressurized with the respective gas mixture. When the pressure reached 2.20 MPa and the flowrate was constant, the cell was cooled down to 253 K to induce the spontaneous crystallization of hydrate and ice. After the formation of hydrates and ice, the cell was slowly warmed up to allow the dissociation of ice and most hydrate crystals until only a few hydrate crystals were left. Subsequently, the cell was cooled down again to a temperature within the stability field of the hydrate phase, but above the melting temperature of the ice. Under these conditions set, euhedral gas hydrate crystals were allowed to grow. This “melting-cooling” process was carried out three times before the p-T condition was fixed at 2.20 MPa and 274 K for the formation of mixed gas hydrates. To investigate the hydrate formation process, three different test scenarios were carried out with different gas flows but under identical p-T conditions. The inlet and outlet valves located outside the pressure cell were set to the desired position once the mixed gas hydrates started to form. In test scenario 1 (open system), the inlet and outlet valves were kept open throughout the whole experiment. Test scenario 2 (closed system) was carried out with the inlet and outlet valves being closed right after initial pressurization to mimic a system with a limited gas supply. The outlet valve was closed in test scenario 3 (semi-closed system) while the inlet valve was open. These changes on the gas flow were maintained throughout the whole formation process. Each test scenario was repeated for 3 times during the experiments. A confocal Raman spectrometer (LABRAM HR Evolution, Horiba Jobin Yvon) with 1800-grooves/mm grating and a 20× microscope Olympus BX-FM objective was used for the in situ Raman measurements on the mixed gas hydrates. The excitation source was a frequency-doubled Nd:YAG solid-state laser with an output power of 100 mW working at 532 nm. With a focal length of 800 mm, the spectral resolution reached around 0.6 cm-1. A motorized pinhole in the analyzing beam path enabled to variably increase the spatial resolution of laser-spot measurements which in x-y-direction was 0.5 µm and 1.5 µm in z-direction. Before the experiments, the Silicon band (521 cm-1) was employed for the calibration of Raman band positions. During the experiments, a pinhole size of 50 µm was chosen for measurements on the hydrate surface while a pin hole size of 100 µm was set for the gas phase measurements. The acquisition time was 5 seconds with 2 averaged exposures. Neutral density filters that adjusted the output laser power was selected at 100% for the experiment since it provided the best signal-to-noise ratio while laser irradiation damage at the sample was not observed. For each experimental test, 12 hydrate crystals were randomly selected in the pressure cell. With the help of a motorized, software controlled Märzhauser Scan+ sample stage attached to the microscope, which allowed for the positioning of the sample cell at defined coordinates, the selected hydrate crystals could be monitored over the entire duration of the experiment. Single point Raman spectroscopic measurements were performed right after initial pressurization on hydrate crystal surface. For the following 4 days, a continuous characterization on these crystals were carried out to record the changes of hydrate composition during the formation process.
    Keywords: mixed gas hydrates ; in situ Raman spectroscopy ; Earth Remote Sensing Instruments 〉 Active Remote Sensing 〉 Spectrometers/Radiometers 〉 Lidar/Laser Spectrometers ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 GAS HYDRATES 〉 GAS HYDRATES FORMATION ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 GAS HYDRATES 〉 GAS HYDRATES PHYSICAL/OPTICAL PROPERTIES 〉 STABILITY ; resource 〉 energy resource
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-01-19
    Description: Abstract
    Description: This dataset is supplemental to the paper Wallis et al. (2021) and contains data on dislocations and their stress fields in olivine from the Oman-UAE ophiolite measured by oxidation decoration, electron backscatter diffraction (EBSD) and high-angular resolution electron backscatter diffraction (HR-EBSD). The datasets include images of decorated dislocations, measurements of lattice orientation and misorientations, densities of geometrically necessary dislocations, and heterogeneity in residual stress. Data are provided as 6 TIF files, 8 CTF files, and 37 tab-delimited TXT files. Files are organised by the figure in which the data are presented in the main paper. Data types or sample numbers are also indicated in the file names.
    Keywords: EPOS ; multi-scale laboratories ; rock and melt physical properties ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 MINERALS 〉 MINERAL PHYSICAL/OPTICAL PROPERTIES 〉 COMPOSITION/TEXTURE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRESS ; olivine ; peridotite ; Scanning Electrone Microscope
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...