ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (148,900)
  • 1975-1979  (148,900)
Collection
Years
Year
  • 1
    Publication Date: 2023-05-24
    Description: An estimate of average river particulate matter (RPM) composition was bàsed on analyses of more than 40 elements in the Amazon, Congo, Ganges, Magdalena, Mekong, Parana and Orinoco rivers, to which were added literature data for 13 other major world rivers, covering the whole spectrum of morphoclimatic features. Geographic variations of major elements in RPM are mostly linked to weathering types and to the balance between weathering rate and river transport. As a result of chemical erosion, Al, Fe and Ti are enriched in RPM with respect to the average parent rock, while Na, Ca, Mg and Sr are strongly depleted. These figures are directly related to the relative importance of dissolved and particulate transport in rivers; this has been computed for each of 40 elements. In order to study weathering on a global scale, the total observed elemental fluxes (dissolved + particulate) have been computed and compared to theoretical ones. The latter were derived from the elemental content in the average parent rock and the total quantity of weathered material, computed from the Al ratio in RPM and in parent rock. Observed and theoretical fluxes are balanced for the less mobilized elements (rare earths, Co, Cr, Cs, Fe, Mn, Rb, Si, Th, Ti, U and V) for which no enrichment relative to Al is noted in RPM, and for B, Ba, Ca, K, Mg, Na, Sr which are relatively depleted in RPM due to their high dissolved transport. Additional fluxes have been found for Br, Sb, Pb, Cu, Mo, Zn and are possible also for Ni and P. This is reflected by marked enrichments in RPM relative to Al for the poorly or moderately dissolved transports (Pb, Cu, Zn). Several hypotheses involving either the natural origin (volcanic dust, marine aerosols, geochemical fractionation) or the artificial origin (worldwide pollution) are discussed to explain these discrepancies, assuming river transport and weathering either to be in a steady state on a global scale or not. However, none of them can fully account for these additional fluxes. It is most likely that these excesses have multiple origins, anthropogenic or natural or both. The comparison between RPM and deep-sea clay compositions emphasizes the prime influence of river input on oceanic sedimentation of Si, Al, Fe, Ti, lanthanides, Sc, Rb, V, etc. A few elements such as Zn, Sb, occur in excess in RPM as compared to deep-sea clays; in order to balance this excess, a remobilization of these elements out of the sediment can be considered. Finally, the enrichment of Co, Cu, Mn and Ni in deep-sea clays compared to RPM is discussed and attributed to several sources and processes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  Marine Geology, 23 (1-2). pp. 57-75.
    Publication Date: 2020-12-08
    Description: Several types of abyssal bedforms have been discovered during surveys with a deeply towed instrument package at water depths of 1.5–6 km in the Pacific and Atlantic Oceans. Cores and current-meter records obtained at the same sites provide data for interpreting their dynamics. Wave and current ripples are best portrayed in bottom photographs, but medium-scale bedforms, including sand waves, mud waves and erosional furrows, are described by interpreting high-resolution side-looking sonar records. The largest examples affect surface-ship echograms, though their shape and structure can seldom be resolved without near-bottom observations. Wave ripples are common on the slopes of seamounts and ridges, while current ripples and sand waves occur beneath some fast thermohaline currents whose beds are shallower than the foraminiferal compensation depth. Depositional and erosional bedforms in cohesive sediment have been found beneath the deepest thermohaline currents; they may be restricted to areas where the flow is unusually steady in direction.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research and Oceanographic Abstracts, 23 (7). pp. 613-628.
    Publication Date: 2018-03-08
    Description: A complete set of linearly independent relationships among the different cross spectral components obtained from pairs of moored instruments is derived which can be utilized to test whether or not the observed fluctuations within the internal wave frequency band represent a field of propagating internal waves. A further complete set of relationships is derived which enables to test whether or not the internal wave field is horizontally isotropic and (or) vertically symmetric. These relations are compared with corresponding relations for alternative models (standing internal wave modes, three-dimensional isotropic turbulence) and their capability to discriminate between the various models is investigated. The tests are applied to a set of data for which it is found that the observed fluctuations are consistent with both propagating and standing internal waves whereas isotropic turbulence must be rejected for the most part of the internal wave frequency band.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    In:  In: Biogeochemical Cycling of Mineral-Forming Elements. Studies in Environmental Science, 3 . Elsevier, Amsterdam, pp. 131-162. ISBN 0-444-41745-1
    Publication Date: 2018-02-09
    Description: This chapter discusses the carbon turnover, calcification, and growth in coral reefs. Carbon turnover within a total reef community is a function of two distinct, biochemically interacting cycles. The first is the metabolic cycle consisting of the photosynthetic fixation of CO2 and the release of CO2 by respiration and decomposition processes. Superimposed on this are the direct incorporation of organic compounds (dissolved or particulate; living or non-living) originating outside the reef systems (in the adjacent ocean waters), and the loss of organic compounds from the reef system into the out-flowing water. The second is the inorganic carbonate cycle involving the biological and non-biological precipitation and dissolution of carbonates. Superimposed on this is the loss of particulate carbonates in suspension in the out-flowing water. The main chemical component of a coral-reef system is calcium carbonate, which occurs either as high-Mg calcite, aragonite, or low-Mg calcite. The mean calcification values in various environments at One Tree Reef are presented in the chapter. These data may be converted to an implied vertical growth rate potential assuming that accrual is dominantly aragonite (density = 2.89 g cm–3) and that there is 50% porosity after normal compaction.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-05
    Description: Using the fault plane mechanisms of the shallow earthquakes occurring along the Hellenic arc and the extent of the intermediate seismic belt, we make a quantitative estimate of the relative motion occurring between the Hellenic arc and the adjacent sea floor. This estimate is then used to evaluate the deformation in the Aegean area and to reconstruct the pattern of motion over the Eastern Mediterranean region for the last 13 m.y. It is shown that this pattern is compatible with the neotectonic and seismicity studies in Aegea. We then discuss the dynamics of the area and propose that, since Serravallian-Tortonian time, Aegea has been spreading gravitationally in front of the southwestward advancing Turkey. The reasons for this gravitational spreading are discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Elsevier
    In:  Earth and Planetary Science Letters, 45 (2). pp. 411-428.
    Publication Date: 2017-02-08
    Description: Data gathered by recent “Islas Orcadas” cruises reveal the seafloor spreading pattern for a region south of the Agulhas/Falkland fracture zone system. The presence of a magnetic anomaly bight about the Agulhas Plateau indicates that the Agulhas Plateau may have developed at the site of a tectonic plate triple junction during the Late Cretaceous. A westward jump in the seafloor spreading center during the Late Maestrichtian (anomaly 34−31) reduced the offset across the Falkland/Agulhas fracture zone system and resulted in the formation of two conjugate aseismic ridges here described as the Meteor and Islas Orcadas Rises. The magnetic lineation pattern in the Agulhas Basin suggests that a tectonic plate (Malvinas Plate) existed during Campanian to Maestrichtian times. Relative rates of motion are calculated for Antarctica, South America, and Africa for the Late Cretaceous.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Elsevier
    In:  Earth and Planetary Science Letters, 35 (1). pp. 49-54.
    Publication Date: 2017-01-19
    Description: The usually high concentrations of Zn, Pb, Cd, and Cu in the most recently accreted portions of ferromanganese nodules from the western Baltic Sea are thought to reflect increased metal input due to anthropogenic mobilization. If so, the point of increase represents a time horizon within the structure of the nodule. Similar trace metal distributions of radiometrically dated sediments from the same area suggest that the ferromanganese nodules have grown in thickness between 0.02 and 0.16 mm yr−1. From this growth rate anthropogenic Zn flux to the nodule surface was calculated to be 80 mg m−2 yr−1.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Elsevier
    In:  Earth and Planetary Science Letters, 36 (3). pp. 413-422.
    Publication Date: 2016-09-12
    Description: Petrographic examination of amygdules and veins associated with moderately altered pillow basalts dredged from the Peru Trench has revealed that a consistent pattern of mineral crystallization has occurred. This sequence is: (1) green, weakly pleochroic clay (R.I. 〉 1.56); (2) dark yellowish brown, non-pleochroic clay (R.I. 〉 1.56); (3) light yellowish brown to colorless, fibrous, weakly pleochroic clay (R.I. 〈 1.56); and (4) calcite or celadonite. Chemical and X-ray diffraction analyses suggest that all clay mineral amygdule and vein fillings are dominated by intimate mixtures of an Fe-rich saponite and nontronite with very small admixtures of serpentine and illite. It is argued that sequential mineral fillings of fractures and vesicles may provide significant information about the chemistry of circulating interstitial fluids. For the pillow basalts studied the first-formed clays were enriched in nontronite, thereby suggesting Fe-rich fluids. These in turn were followed by saponite-rich clays and calcite. The change from Fe-and Mg-rich fluids to dominantly Ca-rich fluids is thought to correspond to a change from mafic mineral alteration to plagioclase alteration in the pillow basalts. An increase in the Fe3+/Fe2+ ratio of clays toward the centers of vesicles may indicate a change toward a more oxidizing environment of alteration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Elsevier
    In:  Earth and Planetary Science Letters, 37 (3). pp. 409-420.
    Publication Date: 2016-09-09
    Description: Five separate exposures of oceanic basalts were dredged in the vicinity of the Peru-Chile Trench between 9° and 27°S latitude. Each dredge is dominated by abundant pillow basalts. Approximately ten of the most unaltered, glassy and fine-grained samples were selected for detailed chemical and petrographic analyses from each dredge area. All basalts recovered in the Peru-Chile Trench are olivine and quartz-normative tholeiites that are believed to have formed at the now extinct Galapagos Rise 30–50 m.y. ago. Detailed chemical analyses of the basalts, including major and selected trace and rare earth elements, indicate that considerable compositional variability exists both within each of the dredged areas as well as between areas. Most of the inherent chemical variability observed within particular basement sections appears consistent with the concept of temporal evolution of magma bodies at a former spreading center by shallow-level fractional crystallization involving primarily plagioclase and olivine. In contrast, important chemical differences between the dredged areas suggest compositional heterogeneities in the mantle source regions. Our results indicate that although shallow-level fractionation has brought about large changes in composition of basalts in each area, compositional trends are distinct and appear to reflect original mantle-derived compositional differences.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Volcanology and Geothermal Research, 4 (1-2). pp. 99-116.
    Publication Date: 2016-09-09
    Description: Thirty-four ash layers of Pleistocene and Pliocene age from DSDP Site 192, northwestern Pacific Ocean, have been subjected to detailed chemical and optical study to evaluate: (1) the chemical and optical variability in glass shards from deep-sea ash layers, and (2) secondary changes brought about by prolonged exposure to seawater. Glass shards from approximately half of the ash layers studied were found to have uniform compositions which approach the precision of the microprobe chemical analyses, whereas the remainder are compositionally diverse (e.g., SiO2, variations of 5–15% among shards from the same ash layer) and appear to be the eruptive products of compositionally zoned magma chambers. Optical studies of glass shards confirm the absence of devitrification or the formation of pervasive secondary alteration products. By contrast, chemical studies suggest that the glass shards have experienced progressive hydration with possible minor ion exchange of K, Mg, Ca and Si. The hydration occurs rapidly and leads to a rather uniform water content of 4.5–5% after several hundred thousands of years exposure to seawater. Step-wise heating dehydration experiments, optical effects, and published'oxygen isotope studies indicate that the water of hydration is incorporated uniformly within the glass. Systematic chemical differences between electron microprobe analyses of glass shard interiors and corresponding bulk chemical study by atomic absorption lead us to postulate that glass shard margins have undergone a minor chemical exchange with major cations in seawater. They have gained 0.10–0.20 wt. % K20, MgO, and CaO while losing a corresponding amount of Si2O. Although the glass shards from DSDP Site 192 are hydrated and may have experienced subtle, surficial ion exchange, we stress that they are the most chemically representative samples available of magmas that were explosively erupted from volcanic arcs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...