ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Geophysical Union  (321)
  • 2020-2023  (321)
Collection
Years
Year
  • 1
    Publication Date: 2022-10-20
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zippel, S. F., Farrar, J. T., Zappa, C. J., & Plueddemann, A. J. Parsing the kinetic energy budget of the ocean surface mixed layer. Geophysical Research Letters, 49(2), (2022): 2021GL095920, https://doi.org/10.1029/2021GL095920.
    Description: The total rate of work done on the ocean by the wind is of considerable interest for understanding global energy balances, as the energy from the wind drives ocean currents, grows surface waves, and forces vertical mixing. A large but unknown fraction of this atmospheric energy is dissipated by turbulence in the upper ocean. The focus of this work is twofold. First, we describe a framework for evaluating the vertically integrated turbulent kinetic energy (TKE) equation using measurable quantities from a surface mooring, showing the connection to the atmospheric, mean oceanic, and wave energy. Second, we use this framework to evaluate turbulent energetics in the mixed layer using 10 months of mooring data. This evaluation is made possible by recent advances in estimating TKE dissipation rates from long-enduring moorings. We find that surface fluxes are balanced by TKE dissipation rates in the mixed layer to within a factor of two.
    Description: This work was funded by NSF Award No. 2023 020, and by NASA as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS), supporting field work for SPURS-1 (NASA Grant No. NNX11AE84G), and for analysis (NASA Grant No. 80NSSC18K1494), and as part of SASSIE (NASA Grant No. 80NSSC21K0832). This work was also funded by NSF through Grant Award Nos. 1756 839, 2049546, and by ONR through Grant N000141712880 (MISO-BoB).
    Keywords: Air/sea interaction ; Turbulence ; Mixed layer ; Wind work ; Boundary layer ; Waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 125(6), (2020): e2019JB019239, doi:10.1029/2019JB019239.
    Description: P‐to‐S‐converted waves observed in controlled‐source multicomponent ocean bottom seismometer (OBS) records were used to derive the Vp/Vs structure of Cascadia Basin sediments. We used P‐to‐S waves converted at the basement to derive an empirical function describing the average Vp/Vs of Cascadia sediments as a function of sediment thickness. We derived one‐dimensional interval Vp/Vs functions from semblance velocity analysis of S‐converted intrasediment and basement reflections, which we used to define an empirical Vp/Vs versus burial depth compaction trend. We find that seaward from the Cascadia deformation front, Vp/Vs structure offshore northern Oregon and Washington shows little variability along strike, while the structure of incoming sediments offshore central Oregon is more heterogeneous and includes intermediate‐to‐deep sediment layers of anomalously elevated Vp/Vs. These zones with elevated Vp/Vs are likely due to elevated pore fluid pressures, although layers of high sand content intercalated within a more clayey sedimentary sequence, and/or a higher content of coarser‐grained clay minerals relative to finer‐grained smectite could be contributing factors. We find that the proto‐décollement offshore central Oregon develops within the incoming sediments at a low‐permeability boundary that traps fluids in a stratigraphic level where fluid overpressure exceeds 50% of the differential pressure between the hydrostatic pressure and the lithostatic pressure. Incoming sediments with the highest estimated fluid overpressures occur offshore central Oregon where deformation of the accretionary prism is seaward vergent. Conversely, landward vergence offshore northern Oregon and Washington correlates with more moderate pore pressures and laterally homogeneous Vp/Vs functions of Cascadia Basin sediments.
    Description: This research was funded by National Science Foundation (NSF) Grant OCE‐1657237 to J. P. C, OCE‐1657839 to A. F. A. and S. H., and OCE‐1657737 to S. M. C. Data used in this study were acquired with funding from NSF Grants OCE‐1029305 and OCE‐1249353. Data used in this research were provided by instruments from the Ocean Bottom Seismic Instrument Center (http://obsic.whoi.edu, formerly OBSIP), which is funded by the NSF. OBSIC/OBSIP data are archived at the IRIS Data Management Center (http://www.iris.edu) under network code X6 (https://doi.org/10.7914/SN/X6_2012). Data processing was conducted with Emerson‐Paradigm Software package Echos licensed to Woods Hole Oceanographic Institution under Paradigm Academic Software Program and MATLAB package SeismicLab of the University of Alberta, Canada (http://seismic-lab.physics.ualberta.ca), under GNU General Public License (MATLAB® is a registered trademark of MathWorks).
    Description: 2020-11-28
    Keywords: Vp/Vs ; sediments ; ocean bottom seismometer ; Juan de Fuca plate ; Cascadia
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-27
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 48(15), (2021): e2021GL093309, https://doi.org/10.1029/2021GL093309.
    Description: Reduction of seismic velocities has been employed to study the hydration of incoming plates and forearc mantle in recent years. However, few constraints have been obtained in the Southern Mariana Trench. We use an ocean bottom seismograph (OBS) deployment to conduct Rayleigh wave tomographic studies to derive the SV-wave velocity structure near the Southern Mariana Trench. Measured group and phase velocities as a function of period are inverted to determine the SV-wave velocity using a Bayesian Monte Carlo algorithm. The incoming Pacific Plate is characterized by low velocities (3.6–4.1 km/s) within the upper ∼25 km of the mantle near the trench, indicating extensive mantle hydration of the incoming plate in southern Mariana. The velocity reduction in the forearc mantle is not as large as in central Mariana, most likely indicating a lower forearc serpentinization in this region, which is consistent with the absence of serpentinite mud volcanoes.
    Description: This study is supported by the Hong Kong Research Grant Council Grants (No. 14304820), National Natural Science Foundation of China (Nos. 91858207, 41890813, and 91628301), Chinese Academy of Sciences (Nos. Y4SL021001, QYZDY-SSW-DQC005, 133244KYSB20180029, and COMS2019Q10), and National Key R&D Program of China (Nos. 2018YFC0309800, 2018YFC0310105, and 2018YFC0308003), Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (No. GML2019ZD0205), Faculty of Science at CUHK.
    Description: 2022-01-26
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-19
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zhou, P., Stockli, D. F., Ireland, T., Murray, R. W., & Clift, P. D. Zircon U-Pb age constraints on NW Himalayan exhumation from the Laxmi Basin, Arabian Sea. Geochemistry Geophysics Geosystems, 23(1), (2022): e2021GC010158, https://doi.org/10.1029/2021GC010158.
    Description: The Indus Fan, located in the Arabian Sea, contains the bulk of the sediment eroded from the Western Himalaya and Karakoram. Scientific drilling in the Laxmi Basin by the International Ocean Discovery Program recovered a discontinuous erosional record for the Indus River drainage dating back to at least 9.8 Ma, and with a single sample from 15.6 Ma. We dated detrital zircon grains by U-Pb geochronology to reconstruct how erosion patterns changed through time. Long-term increases in detrital zircon U-Pb components of 750–1,200 and 1,500–2,300 Ma record increasing preferential erosion of the Himalaya relative to the Karakoram between 8.3–7.0 and 5.9–5.7 Ma. The average contribution of Karakoram-derived sediment to the Indus Fan fell from 70% of the total at 8.3–7.0 Ma to 35% between 5.9 and 5.7 Ma. An increase in the contribution of 1,500–2,300 Ma zircons starting between 2.5 and 1.6 Ma indicates significant unroofing of the Inner Lesser Himalaya (ILH) by that time. The trend in zircon age spectra is consistent with bulk sediment Nd isotope data. The initial change in spatial erosion patterns at 7.0–5.9 Ma occurred during a time of drying climate in the foreland. The increase in ILH erosion postdated the onset of dry-wet glacial-interglacial cycles suggesting some role for climate control. However, erosion driven by rising topography in response to formation of the ILH thrust duplex, especially during the Pliocene, also played an important role, while the influence of the Nanga Parbat Massif to the total sediment flux was modest.
    Description: This work was partially funded by a grant from the USSSP, as well as additional funding from the Charles T. McCord Chair in petroleum geology at LSU, and the Chevron (Gulf) Centennial professorship and the UTChron Laboratory at the University of Texas.
    Keywords: Erosion ; Zircon ; Monsoon ; Himalaya ; Provenance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 49, (2022): e2021GL096530, https://doi.org/10.1029/2021gl096530.
    Description: Water-mass transports in the vast and seemingly quiescent abyssal ocean, basically along topographically-guided pathways, play a pivotal role in the Earth's climate. The pulse of abyssal circulations can be taken with observations at topographic choke points. The Yap-Mariana Junction (YMJ) is the exclusive choke point through which the Lower Circumpolar Deep Water (LCDW) enters the Philippine Sea. Here, we quantify the LCDW transport and its variability based on mooring observations at the YMJ and the Mariana Trench (MT). The LCDW flows northward toward the Philippine Sea as an intensified current on the western side of the YMJ, with maximum mean velocity reaching 7.6 cm/s. The mean LCDW transports through the MT and the YMJ are 2.2 ± 1.0 Sv and 2.1 ± 0.4 Sv, respectively. Reversal flow at autumn in both the YMJ and MT is captured, indicating seasonal variability of the abyssal flow.
    Description: This work was supported by the National Natural Science Foundation of China (Grant no. 91858203, 91958205, 42076027, 41676011), the National Key R&D Program of China (Grant no. 2018YFC0309800), the Global Change and Air–Sea Interaction Project (Grant no. GASI-IPOVAI-01-03, GASI-IPOVAI-01-02).
    Description: 2022-07-28
    Keywords: Abyssal circulation ; Yap-Mariana Junction ; Lower circumpolar deep water
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-06-06
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 49(2), (2022): e2021GL096216, https://doi.org/10.1029/2021GL096216.
    Description: Ocean-to-ice heat flux (OHF) is important in regulating the variability of sea ice mass balance. Using surface drifting buoy observations, we show that during winter in the Arctic Ocean's Beaufort Gyre region, OHF increased from 0.76 ± 0.05 W/m2 over 2006–2012 to 1.63 ± 0.08 W/m2 over 2013–2018. We find that this is a result of thinner and less-compact sea ice that promotes enhanced winter ice growth, stronger ocean vertical convection, and subsurface heat entrainment. In contrast, Ekman upwelling declined over the study period, suggesting it had a secondary contribution to OHF changes. The enhanced ice growth creates a cooler, saltier, and deeper ocean surface mixed layer. In addition, the enhanced vertical temperature gradient near the mixed layer base in later years favors stronger entrainment of subsurface heat. OHF and its increase during 2006–2018 were not geographically uniform, with hot spots found in an upwelling region where ice was most seasonally variable.
    Description: This study was supported by the National Key Research and Development Program of China (2018YFA0605901), the National Natural Science Foundation of China (41941012; 42076225; 41776192; 41976219; 41706211). S. C. was supported by the Woods Hole Oceanographic Institution Early Career Scientist Fund and the Lenfest Fund for Early Career Scientists. J. Z. was supported by U.S. NSF Grants PLR-1603259, PLR-1602985, and NNA-1927785. M. S. was supported by U.S. ONR Grant N00014-17-1-2545, NSF Grants PLR 1603266 and OPP-1751363 and NOAA Grants NA15OAR4320063AM170 and NA20OAR4320271.
    Keywords: ocean-to-ice heat flux ; entrainment heat flux ; Ekman pumping ; Beaufort Gyre ; sea ice retreat ; ice leads
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Solid Earth 124 (2019): 10023–10055, doi: 10.1029/2019JB017648.
    Description: We studied long‐term evolution of nontransform discontinuities (NTDs) on the Mid‐Atlantic Ridge from 0‐ to ~20‐ to 25‐Ma crust using plate reconstructions of multibeam bathymetry, long‐range HMR1 sidescan sonar, residual mantle Bouguer gravity anomaly (RMBA), and gravity‐derived crustal thickness. NTDs have propagated north and south with respect to flowlines of relative plate motion and both rapidly and slowly compared to the half spreading rate; at times they have been quasi‐stable. Fast, short‐term (〈2 Myr) propagation is driven by reduced magma supply (increased tectonic extension) in the propagating ridge tip when NTD ridge‐axis offsets are small (≲5 km). Propagation at larger offsets generally is slower and longer term. These NTDs can show classic structures of rift propagation including inner and outer pseudofaults and crustal blocks transferred between ridge flanks by discontinuous jumps of the propagating ridge tip. In all cases crustal transfer occurs within the NTD valley. Aside from ridge‐axis offset, the evolution of NTDs appears to be controlled by three factors: (1) gross volume and distribution of magma supplied to ridge segments as controlled by 3‐D heterogeneities in mantle fertility and/or dynamic upwelling; this controls fundamental ridge segmentation. (2) The lithospheric plumbing system through which magma is delivered to the crust. (3) The consequent focusing of tectonic extension in magma‐poor parts of spreading segments, typically at segment ends, which can drive propagation. We also observe long‐wavelength (5‐10 Myr) RMBA asymmetry between the conjugate ridge flanks, and we attribute this to asymmetric distribution of density anomalies in the upper mantle.
    Description: We thank Tingting Wang for providing plate‐reconstruction codes, Ross Parnell‐Turner for technical support, and Anouk Beniest and an anonymous reviewer for comments that helped to improve the manuscript. We benefited greatly from discussion with the Deep Sea Geodynamics Group of the South China Sea Institute of Oceanology. Figures were drawn using the GMT software of Wessel and Smith (1998). This study was supported by National Natural Science Foundation of China (91628301, 41890813, and U1606401), Chinese Academy of Sciences (Y4SL021001, QYZDY‐SSW‐DQC005, and 133244KYSB20180029), Chinese National 985 Project (1350141509), International Exchange Program for Graduate Students of Tongji University (2016020006), China Scholarship Council (201706260034), and Woods Hole Oceanographic Institution. We thank the crews and science parties of the ARSRP, MAREAST, MODE94, and MODE98 expeditions for their contributions to data acquisition. ARSRP and MAREAST data acquisition was funded by Office of Naval Research grant N00014‐90‐J‐6121 and by U.S. National Science Foundation grant OCE‐9503561, respectively. Access to the original data used in this study is available at https://doi.org/10.26025/z2z7‐kd89.
    Description: 2020-03-11
    Keywords: Mid‐Atlantic Ridge ; Nontransform discontinuity ; Plate reconstruction ; Propagating rift
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Water Resources Research 57(7), (2021): e2020WR028727, https://doi.org/10.1029/2020WR028727.
    Description: Numerous wetlands in the prairies of Canada provide important ecosystem services, yet are threatened by climate and land-use changes. Understanding the impacts of climate change on prairie wetlands is critical to effective conservation planning. In this study, we construct a wetland model with surface water balance and ecoregions to project future distribution of wetlands. The climatic conditions downscaled from the Weather Research and Forecasting model were used to drive the Noah-MP land surface model to obtain surface water balance. The climate change perturbation is derived from an ensemble of general circulation models using the pseudo global warming method, under the RCP8.5 emission scenario by the end of 21st century. The results show that climate change impacts on wetland extent are spatiotemporally heterogenous. Future wetter climate in the western Prairies will favor increased wetland abundance in both spring and summer. In the eastern Prairies, particularly in the mixed grassland and mid-boreal upland, wetland areas will increase in spring but experience enhanced declines in summer due to strong evapotranspiration. When these effects of climate change are considered in light of historical drainage, they suggest a need for diverse conservation and restoration strategies. For the mixed grassland in the western Canadian Prairies, wetland restoration will be favorable, while the highly drained eastern Prairies will be challenged by the intensified hydrological cycle. The outcomes of this study will be useful to conservation agencies to ensure that current investments will continue to provide good conservation returns in the future.
    Description: Z. Zhang was funded by a Mitacs Accelerate Fellowship funded by Ducks Unlimited Canada's Institute for Wetland and Waterfowl Research. Z. Zhang, Z. Li, and Y. Li acknowledge the financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant, and Global Water Futures Program, Canada First Research Excellence Fund. This project was supported by grants from Wildlife Habitat Canada, Bass Pro Shops Cabela’s Outdoor Fund, and the Alberta NAWMP Partnership.
    Description: 2021-12-21
    Keywords: Wetland ; Hydrology ; Climate change ; Prairie Pothole Region ; Waterfowl ; Conservation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 126(3), (2021): e2021JB021709, https://doi.org/10.1029/2021JB021709.
    Description: Serpentinites are increasingly recognized as playing an important role in the global geochemical cycle. However, discriminating the contributions of serpentinites to arc magmas from those of other subduction components is challenging. The Okinawa Trough is a back-arc basin developed behind the Ryukyu subduction zone, where magmas are extensively affected by sediment subduction. In this study, we reported the F-Cl concentrations and Sr-Nd-Pb-B isotopes of basaltic andesites from the Yaeyama Graben, Yonaguni Graben, and Irabu Knoll in the southern Okinawa Trough. The Irabu Knoll lavas show the most enrichment of fluid-mobile elements and F ± Cl, and have the heaviest B isotopes (δ11B: +6.6 ± 1.5‰). They also have decoupled Sr-Nd isotopes: higher 87Sr/86Sr (∼0.7049) but have no obvious decrease of 143Nd/144Nd (∼0.5128). Results from slab dehydration modeling and mixing calculations suggest that the heavy δ11B in the Irabu Knoll lavas is not consistent with fluids derived from altered oceanic crust (AOC), sediments, or wedge serpentinites (formed in the mantle wedge), but rather from slab serpentinites (formed within the subducting plate); sediments control the subduction input of Nd, whereas the decoupled Sr-Nd isotopes are most likely due to the excess radiogenic Sr carried by AOC fluids. Our results imply that recycling of serpentinite fluids and AOC fluids are usually coupled in subduction zones, as the arc lavas influenced by subducted serpentinite generally show Sr-Nd isotopes decoupling. The large variation of Sr-Nd-B isotopes observed in a relatively localized area is consistent with a focused migration through the mantle wedge of components from multiple sources.
    Description: This study was funded by the National Natural Science Foundation of China (91958213), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB42020402), the China Postdoctoral Science Foundation (2019M662454), the Shandong Provincial Natural Science Foundation, China (ZR2020QD068 and ZR2020MD068), the International Partnership Program of the Chinese Academy of Sciences (133137KYSB20170003), the Special Fund for the Taishan Scholar Program of Shandong Province (ts201511061), and the China Scholarship Council (201709410550).
    Description: 2021-09-12
    Keywords: AOC ; Boron isotope ; Geochemical cycling ; Serpentinite ; Sr-Nd isotope decoupling ; Subduction zone
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-27
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 126(2), (2021): e2020JB020735, https://doi.org/10.1029/2020JB020735.
    Description: We simulate mantle flow, thermal structure, and melting processes beneath the ridge axis of the South China Sea (SCS), combining the nominally anhydrous melting and fractional crystallization model, to study mantle heterogeneity and basin evolution. The model results are constrained by seismically determined crustal thickness and major element composition of fossil ridge axis basalts. The effects of half-spreading rate, mantle potential temperature, mantle source composition, and the pattern of melt migration on the crustal thickness and magma chemical composition are systematically investigated. For the SCS, the east and southwest (SW) subbasins have comparable crustal thickness, but the east subbasin has higher FeO and Na2O contents compared to the SW subbasin. The estimated best fitting mantle potential temperatures in the east and SW subbasins are 1,360 ± 15 °C and 1,350 ± 25 °C, respectively. The mantle in the east subbasin (site U1431) prior to the cessation of seafloor spreading is composed primarily of the depleted mid-ocean ridge basalt mantle (DMM), and is slightly contaminated by eclogite/pyroxenite-rich component. However, the mantle source composition of the SW subbasin (sites U1433 and U1434) contains a small percentage (2–5%) of lower continental crust. Basalt samples at the northern margin of the east subbasin (site U1500) shows similar chemical characteristics with that of the SW subbasin. We suggest that the basin-scale variability in the mantle heterogeneity of the SCS can be explained by a single model in which the contamination by the lower continental crust is gradually diluted by melting of DMM as the ridge moves away from the rifted margin.
    Description: This work is supported by National Natural Science Foundation of China (41890813, 91628301), Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0205), Chinese Academy of Sciences (Y4SL021001, QYZDY-SSW-DQC005, 133244KYSB20180029), International Exchange Program for Graduate Students of Tongji University (201502, 201801337), Chinese Scholarship Council (201606260207), and US National Science Foundation (OCE-14-58,201). A special acknowledgement should be expressed to China-Pakistan Joint Research Center on Earth Sciences that supports the implementation of this study.
    Description: 2021-07-13
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...