ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
  • AGU  (3)
  • Blackwell Publishing Ltd  (2)
  • Periodicals Archive Online (PAO)
Collection
Years
  • 1
    Publication Date: 2017-04-04
    Description: The rcsults from measurements of extensive parameters (steam output and exhaling surface area) taken at the crater fumarolic field of Vulcano Island (Aeolian arc, southern Italy)are repoded along with a detailed description of the measuring method. The stem emission rate increased by 1 order of magnitude during the observation time (1983-19951, wlde its concenkation in the released gases was only slightly changed. During the same period the total exhaling surface expanded from 50 m2 to more than 2400 m2 and evolved following preferential trends that coincide with the maul tectonic structures of the island. The observed peaks in steam output slow a positive correlation with episodes of volcanic activity unrest. The temporal increase of steam output and the observed development in the exhaling surface areas are consistent with a volcaxo-tectonic triggering or the exhalating tivity. Particularly, the peaks in the steam outpuat re interpreted as a consequence of degassing from an active magma, slowly moving toward the surface.
    Description: Published
    Description: 29829-29842
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: steam output ; fumaroles ; active volcano ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Converging evidence from new top-down and bottomup estimates of fossil "radiocarbon-free" methane emissions indicates that natural geologic sources account for a substantial component of the atmospheric methane budget. Comparing emission estimates based on atmospheric 14CH4 ("radiomethane") with geologic emissions from seepage, including terrestrial macroseeps, microseepage, marine seeps, and geothermal/volcanic emissions from the Earth’s crust, shows that such "geo-CH4" sources can be conservatively estimated at 53 ± 11 Tg yr 1 globally. This makes geo-CH4 second in importance to wetlands as a natural methane source. Such a new appraisal can easily be accommodated within the uncertainty of the global methane budget as recently compiled, and recognizes the importance of geophysical out-gassing of methane generated within the lithosphere. We propose a new coherent contemporary budget in which 30 ± 5% (based on atmospheric radiomethane measurements) of the global source of 582 ± 87 Tg yr 1 has fossil origin, both natural and anthropogenic.
    Description: Published
    Description: L09307
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: methane ; greenhouse-gas ; lithosphere degassing ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-03
    Description: Molecular composition, CH4 isotopes and gas flux of all main terrestrial mud volcanoes and other methane seeps in Italy are being assessed for the first time. Whereas 74% of the Italian gas reservoirs are biogenic, about 80% of the seeps release thermogenic gas. Dry-seep gas generally maintains the reservoir C1/(C2 + C3) ‘‘Bernard’’ ratio while mud volcanoes show molecular fractionation likely occurring during advective migration. Accordingly, a simple and direct use of the ‘‘Bernard’’ parameter might be misleading when applied to mud volcanoes as it could not always reflect the reservoir composition. Methane flux into the atmosphere from macro-seep areas is in the order of 102–106 t km-2y-1. Microseepage is widespread throughout large areas and, on a regional scale, it provides the main methane output. A first emission estimate for the total hydrocarbon-prone area of Italy suggests levels of 105 t y-1, comparable to national sources fromfossil fuel industry
    Description: Published
    Description: L14303
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Methane ; Seeps ; mud volcanoes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The paper describes a case of a natural emission of methane from soil in an urban development area, generating a significant risk for the local population and buildings, due to gas explosiveness and asphyxiation potential. The site is located on the south-western margin of the East-European Platform in eastern Romania, in a hydrocarbon-prone area crossed by the Pericarpathian lineament and regional faults. Molecular composition of gas and stable isotopic analyses of methane (CH4〉90%, δ to the power of 13 C1: -49.4‰, δD1: -173.4‰) indicate a dominant thermogenic origin, with significant amounts of C2-C5 alkanes (~5%), likely migrating through faults from a deep reservoir. Possible candidates are the Saucesti and Secuieni gas fields, located in the same petroleum system. Two surface geochemical surveys, based on closed-chamber flux measurements, were performed to assess the degassing intensity and the extent of the affected area. Methane fluxes from soil reach orders of 10 to the power of 4 mg m to the power of -2 day to the power of -1. Gas seepage mainly occurs in one zone 30 000 m2 wide, and it is likely controlled by channeling along a fault and gas accumulation in permeable sediments and shallow subsoil. The estimated total CH4 emission is about 40 t year to the power of -1 CH4, of which 8–9 t year to the power of -1 are naturally released from soil and 30–35 t year to the power of -1 are emitted from shallow boreholes. These wells have likely channeled the gas accumulated in shallow alluvial sediment but gas flux from soil is still high and mitigation measures are needed to reduce the risk for humans and buildings.
    Description: Published
    Description: 311-320
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: gas hazard ; methane seepage ; soil degassing ; thermogenic gas ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The Chimaera gas seep, near Antalya (SW Turkey), has been continuously active for thousands of years and it is known to be the source of the first Olympic fire in the Hellenistic period. New and thorough molecular and isotopic analyses including methane (approximately 87% v/v; δ to the power of 13 C1 from -7.9‰ to -12.3‰; δ to the power of 13 D1 from -119‰ to -124‰), light alkanes (C2 + C3 + C4 + C5 = 0.5%; C6+: 0.07%; δ to the power of 13 C2 from -24.2‰ to -26.5‰; δ to the power of 13 C3 from -25.5‰ to -27‰), hydrogen (7.5–11%), carbon dioxide (0.01–0.07%; δ to the power of 13 CCO2: -15‰), helium (approximately 80 ppmv; R/Ra: 0.41) and nitrogen (2–4.9%; δ to the power of 15 N from -2‰ to -2.8‰) converge to indicate that the seep releases a mixture of organic thermogenic gas, related to mature type III kerogen occurring in Palaeozoic and Mesozoic organic-rich sedimentary rocks, and abiogenic gas produced by low-temperature serpentinization in the Tekirova ophiolitic unit. Methane is not related to mantle or magma degassing. The abiogenic fraction accounts for about half of the total gas released, which is estimated to be well beyond 50 ton year to the power of -1. Ophiolites and limestones are in contact along a tectonic dislocation leading to gas mixing and migration to the Earth’s surface. Chimaera represents the biggest emission of abiogenic methane on land discovered so far. Deep and pressurized gas accumulations are necessary to sustain the Chimaera gas flow for thousands of years and are likely to have been charged by an active inorganic source.
    Description: Published
    Description: 263-273
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: abiogenic methane ; isotopic composition ; ophiolites ; seep ; serpentinization ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...