ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-8900
    Keywords: Cellulose ; alkaline degradation ; peeling off ; degree of polymerization ; kinetics ; (gluco)isosaccharinic acid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The degradation of cellulosic materials, differing mainly in the degree of polymerization and the number of reducing end groups, was studied under the alkaline conditions similar to those existing in a cementitious repository for low- and intermediate-level radioactive waste (pH 13.3, T = 25°C). The kinetics of alkaline degradation (peeling-off reaction) were studied and the data analyzed by the model of Haas et al. [13]. The observed kinetic parameters for the propagation reaction and overall stopping reaction were compared with literature data. Although measured under different experimental conditions, literature data and data from this study show a consistent picture. Differences in the extent of degradation observed for the different cellulosic materials could be satisfactorily explained by differences in reducing end group content and, consequently, by differences in the degrees of polymerization. Besides the number of reducing end groups, the degree of amorphousness also plays an important role. The main degradation products formed under the experimental conditions used are α- and β-(gluco)isosaccharinic acid. This is in agreement with many other studies on alkaline degradation of cellulose. The two isomers are formed in roughly equal amounts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 4 (1993), S. 163-170 
    ISSN: 1572-9729
    Keywords: factorial analysis ; kinetics ; methane ; methanotrophs ; nutrients
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effect of different mineral nutrients on the kinetics of methane biodegradation by a mixed culture of methanotrophic bacteria was studied. The substrate factors examined were ammonia, iron, copper, manganese, phosphate, and sulphide. The presence of iron in the growth medium had a strong effect on the yield coefficient. Yield coefficients up to 0.49 mg protein per mg methane were observed when iron was added at concentrations of 0.10–5.0 mg/l. Iron addition also increased the maximum methane utilization rate. The same effect was observed after addition of ammonium to a medium where nitrate was the only nitrogen source. The observed Monod constant for methane utilization increased with increasing concentration of ammonia. This shows that ammonia is a weak competitive inhibitor as observed by other researchers. Relatively high levels of both ammonia (70 mg/l) and copper (300 µg/l) inhibited the methane degradation, probably due to the toxic effect of copper-amine complexes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1572-9729
    Keywords: bioavailability ; builders ; detergents ; kinetics ; mineralization ; sewage sludge ; soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Tetradecenyl succinic acid (TSA) is the major component of a detergent builder (C12-C14 alkenyl succinic acid), which is inherently biodegradable. 14C-TSA was dosed as a component of sewage sludge into a soil with a history of sludge amendment at final added concentrations of 1.5 and 30 mg (kg soil)-1. In addition, it was dosed to the soil in an aqueous solution to a final added concentration of 30 mg (kg soil)-1. Dose and form were found to have a pronouced effect on the mineralization kinetics. When dosed in a realistic form and concentration (i.e. 1.5 mg (kg soil)-1 as a component of sludge), TSA was mineralized at its highest rate and to its greatest extent, and the mineralization half-life was 2.4 days. When dosed at 30 mg (kg soil)-1 as a component of sludge, mineralization began immediately, and the half-life was 23 days. In contrast, when dosed at this concentration in aqueous solution, the onset of mineralization was preceded by a 13 day lag period and the mineralization half-life was 69 days. Primary biodegradation and mineralization rates of TSA were very similar. Approximately, half the radioactivity was evolved as 14CO2, while the remaining radioactivity became non-extractable, having presumably been incorporated into biomass or natural soil organic matter (humics). This study demonstrated that TSA is effectively removed from sludge-amended soils as a result of biodegradation. Furthermore, it showed the effect that dose form and concentration have on the biodegradation kinetics and the importance of dosing a chemical not only at a relevant concentration but also in the environmental form in which it enters the soil environment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1572-9729
    Keywords: bacteria ; degradation ; denitrification ; kinetics ; stoichiometry ; toluene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Batch experiments were carried out to investigate the stoichiometry and kinetics of microbial degradation of toluene under denitrifying conditions. The inoculum originated from a mixture of sludges from sewage treatment plants with alternating nitrification and denitrification. The culture was able to degrade toluene under anaerobic conditions in the presence of nitrate, nitrite, nitric oxide, or nitrous oxide. No degradation occurred in the absence of Noxides. The culture was also able to use oxygen, but ferric iron could not be used as an electron acceptor. In experiments with14C-labeled toluene, 34%±8% of the carbon was incorporated into the biomass, while 53%±10% was recovered as14CO2, and 6%±2% remained in the medium as nonvolatile water soluble products. The average consumption of nitrate in experiments, where all the reduced nitrate was recovered as nitrite, was 1.3±0.2 mg of nitrate-N per mg of toluene. This nitrate reduction accounted for 70% of the electrons donated during the oxidation of toluene. When nitrate was reduced to nitrogen gas, the consumption was 0.7±0.2 mg per mg of toluene, accounting for 97% of the donated electrons. Since the ammonia concentration decreased during degradation, dissimilatory reduction of nitrate to ammonia was not the reductive process. The degradation of toluene was modelled by classical Monod kinetics. The maximum specific rate of degradation, k, was estimated to be 0.71 mg toluene per mg of protein per hour, and the Monod saturation constant, K s , to be 0.2 mg toluene/l. The maximum specific growth rate, μ max , was estimated to be 0.1 per hour, and the yield coefficient, Y, was 0.14 mg protein per mg toluene.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 7 (1996), S. 73-81 
    ISSN: 1572-9729
    Keywords: diesel oil ; biodegradation ; CSTR ; kinetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In batch culture diesel oil was degraded rapidly, with a maximum growth rate (for a consortium of microorganisms) of 0.55 h-1. The corresponding yield Y SX was 0.1 Cmol/Cmol. In a continuous stirred tank reactor the maximum dilution rate was about 0.25 h-1, with a yield of 0.3 Cmol/Cmol. With a residence time of 1 day 82% of the influent oil was degraded. In the batch reactor, of the mixture of linear and branched alkanes the linear alkanes were degraded fastest and with the highest yield. Only after most of the linear alkanes had disappeared were the branched alkanes consumed. In a CSTR a large part of the branched alkanes was not degraded.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-2932
    Keywords: fractionation ; redistribution ; saturation ; kinetics ; heavy metals
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Solid-phase transformations of Cd, Cu, Cr, Ni and Zn, added as soluble salts at several levels to two arid-zone soils, were studied over a period of one year. The soils were maintained under a saturated-paste regime and sampled periodically. A selective sequential dissolution procedure was employed to determine the changes in metal distribution among six operationally defined solid-phase fractions. A function, Uts was introduced to measure the fractional attainment of equilibrium of the soils following a perturbation. The direction and rate of redistribution of the added metals in the soils were affected by the nature of the metal, the soil properties and the metal loading level. Cd added to the soils was transferred from the exchangeable (EXC) into the carbonate (CARB) fraction. When soluble Cu, Cr, Ni and Zn were added at low loading levels, metals were transferred from the reducible oxides(RO) bound and easily reducible oxides (ERO) bound fractions and the EXC fraction, into the CARB fraction. However, at the higher loading level, metals were transferred from the EXC and CARB fractions into the organic matter bound (OM), ERO and RO fractions. The Uts function approached lower values as incubation continued but remained removed from 1. The overall flux of metals among fractions was the combined result of the readjustment of the metals in the native soil to changing conditions due to saturation, and the transfer of added soluble metals to the less labile fractions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1572-9729
    Keywords: cometabolism ; cosubstrate ; 4-chlorophenol ; inhibition ; kinetics ; modeling ; monooxygenase ; phenol ; substrate interactions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Batch experiments on the simultaneous utilization of phenol (primary substrate) and 4-chlorophenol (cometabolic secondary substrate) demonstrated two critical substrate interactions. First, the cometabolic degradation of 4-chlorophenol was proportional to the rate of phenol oxidation, which provided the electrons for the initial monooxygenase reaction. Second, 4-chlorophenol inhibited the oxidation of the primary substrate, phenol. Modeling analyses of the degradation of phenol alone and of phenol and 4-chlorophenol together showed that the proportionality between phenol and 4-chlorophenol degradation rates averaged 0.1 mg 4-CP/mg phenol, which corresponds to 0.5% of the electrons generated by phenol oxidation being used as a cosubstrate for the monooxygenase reaction of 4-chlorophenol. In addition, modeling analyses suggest that 4-chlorophenol was a noncompetitive inhibitor of phenol oxidation for high phenol concentrations, but a competitive inhibitor for low phenol concentrations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1572-9729
    Keywords: 2,4-dichlorophenoxyacetic acid ; bacteria ; biodegradation ; kinetics ; kineralization ; xenobiotic
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D) by two Alcaligenes eutrophus strains and one Pseudomonas cepacia strain containing the 2,4-D degrading plasmids pJP4 or pRO101 (=pJP4::Tn1721) was tested in 50 g (wet wt) samples of non-sterile soil. Mineralization was measured as 14C-CO2evolved during degradation of uniformly-ring-labelled 14C-2,4-D. When the strains were inoculated to a level of approximately 108 CFU/g soil, between 20 and 45% of the added 2,4-D (0.05 ppm, 10 ppm or 500 ppm) was mineralized within 72 h. Mineralization of 0.05 ppm and 10 ppm, 2,4-D by the two A. eutrophus strains was identical and rapid whereas mineralization by P. cepacia DBO1(pRO101) occurred more slowly. In contrast, mineralization of 500 ppm 2,4-D by the two A. eutrophus strains was very slow whereas mineralization by P. cepacia DBO1 was more rapid. Comparison of 2,4-D mineralization at different levels of inoculation with P. cepacia DBO1(pRO101) (6×104, 6×106 and 1×108 CFU/g soil) revealed that the maximum mineralization rate was reached earlier with the high inoculation levels than with the low level. The kinetics of mineralization were evaluated by nonlinear regression analysis using five different models. The linear or the logarithmic form of a three-half-order model were found to be the most appropriate models for describing 2,4-D mineralization in soil. In the cases in which the logarithmic form of the three-half-order model was the most appropriate model we found, in accordance with the assumptions of the model, a significant growth of the inoculated strains.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1572-9729
    Keywords: anaerobic fermentation ; olive mill waste ; kinetics ; support
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Two materials of different structure, sepiolite and bentonite, evaluated as supports for the microorganisms effecting anaerobic fermentation, behaved differently towards condensation water from thermally concentrated olive mill wastewater from a kinetic point of view. Assuming the overall anaerobic digestion process to conform to first-order kinetics, the apparent kinetic constant for the digester including sepiolite as support was 1.12 day-1, while that of the digester using the bentonite support was 0.73 day-1. Thus, the apparent kinetic constant of the process was increased by 35% with the use of sepiolite. The yield coefficient, Yp/s, was 0.344 and 0.318 litres CH4 STP/g COD for the sepiolite and bentonite supports respectively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 6 (1995), S. 19-27 
    ISSN: 1572-9729
    Keywords: o-xylene ; toluene ; biofilm ; denitrification ; cometabolism ; competitive inhibition ; kinetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The purpose of this work was to investigate the anaerobic transformation ofo-xylene in a laboratory biofilm system with nitrate as an electron acceptor.o-Xylene was degraded cometabolically with toluene as primary carbon source. A mass balance showed thato-xylene was not mineralized but transformed.o-Methyl-benzalcohol ando-methyl-benzaldehyde were identified as intermediates ofo-xylene transformation which resulted in the formation ofo-methyl-benzoic acid as an end product. A cross inhibition phenomenon was observed between toluene ando-xylene. The presence of toluene was necessary for stimulation ofo-xylene transformation, but above a toluene concentration of 1–3 mg/L theo-xylene removal rate dramatically decreased. In returno-xylene inhibited the toluene degradation at concentrations above 2–3 mg/L.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 6 (1995), S. 109-118 
    ISSN: 1572-9729
    Keywords: analytical model ; biodegradation ; gas/liquid mass transfer ; kinetics ; surface removal rate ; toluene ; trickling filter ; waste gas treatment
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The removal of toluene from waste gas was studied in a trickling biofilter. A high level of water recirculation (4.7 m h−1) was maintained in order to keep the liquid phase concentration constant and to achieve a high degree of wetting. For loads in the range from 6 to 150 g m−3 h−1 the maximum volumetric removal rate (elimination capacity) was 35±10 g m−3 h−1, corresponding to a zero order removal rate of 0.11±0.03 g m−2 h−1 per unit of nominal surface area. The surface removal was zero order above the liquid phase concentrations of approximately 1.0 g m−3, corresponding to inlet gas concentrations above 0.7–0.8 g m−3. Below this concentration the surface removal was roughly of first order. The magnitude of the first order surface removal rate constant, k1A , was estimated to be 0.08–0.27 m h−1 (k1A a=24–86 h−1). Near-equilibrium conditions existed in the gas effluent, so mass transfer from gas to liquid was obviously relatively fast compared to the biological degradation. An analytical model based on a constant liquid phase concentration through the trickling filter column predicts the effluent gas concentration and the liquid phase concentration for a first and a zero order surface removal. The experimental results were in reasonable agreement with a very simple model valid for conditions with an overall removal governed by the biological degradation and independent of the gas/liquid mass transfer. The overall liquid mass transfer coefficient, KLa, was found to be a factor 6 higher in the system with biofilm compared to the system without. The difference may be explained by: 1. Difference in the wetting of the packing material, 2. Mass transfer occurring directly from the gas phase to the biofilm, and 3. Enlarged contact area between the gas phase and the biofilm due to a rough biofilm surface.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 10 (1999), S. 177-191 
    ISSN: 1572-9729
    Keywords: AQUASIM ; biodegradation ; biofilm ; growth ; kinetics ; methane ; modelling ; nitrification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract This article discusses the growth of methanotrophic biofilms. Several independent biofilm growths scenarios involving different inocula were examined. Biofilm growth, substrate removal and product formation were monitored throughout the experiments. Based on the oxygen consumption it was concluded that heterotrophs and nitrifiers co-existed with methanotrophs in the biofilm. Heterotrophic biomass grew on soluble polymers formed by the hydrolysis of dead biomass entrapped in the biofilm. Nitrifier populations developed because of the presence of ammonia in the mineral medium. Based on these experimental results, the computer program AQUASIM was used to develop a biological model involving methanotrophs, heterotrophs and nitrifiers. The modelling of six independent growth experiments showed that stoichiometric and kinetic parameters were within the same order of magnitude. Parameter estimation yielded an average maximum growth rate for methanotrophs, μm, of 1.5 ± 0.5 d−1, at 20 °C, a decay rate, bm, of 0.24 ± 0.1 d−1, a half saturation constant, $${\text{K}}_{{\text{S(CH}}_{\text{4}} {\text{)}}} $$ , of 0.06 ± 0.05 mg CH4/L, and a yield coefficient, $$Y_{CH_4 } $$ , of 0.57 ±: 0.04 g X/g CH4. In addition, a sensitivity analysis was performed on this model. It indicated that the most influential parameters were those related to the biofilm (i.e. density; solid-volume fraction; thickness). This suggests that in order to improve the model, further research regarding the biofilm structure and composition is needed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 6 (1995), S. 295-308 
    ISSN: 1572-9729
    Keywords: reductive dehalogenation ; kinetics ; modeling ; substrate interactions ; cometabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A kinetic model that describes substrate interactions during reductive dehalogenation reactions is developed. This model describes how the concentrations of primary electron-donor and -acceptor substrates affect the rates of reductive dehalogenation reactions. A basic model, which considers only exogenous electron-donor and -acceptor substrates, illustrates the fundamental interactions that affect reductive dehalogenation reaction kinetics. Because this basic model cannot accurately describe important phenomena, such as reductive dehalogenation that occurs in the absence of exogenous electron donors, it is expanded to include an endogenous electron donor and additional electron acceptor reactions. This general model more accurately reflects the behavior that has been observed for reductive dehalogenation reactions. Under most conditions, primary electron-donor substrates stimulate the reductive dehalogenation rate, while primary electron acceptors reduce the reaction rate. The effects of primary substrates are incorporated into the kinetic parameters for a Monod-like rate expression. The apparent maximum rate of reductive dehalogenation (q m, ap ) and the apparent half-saturation concentration (K ap ) increase as the electron donor concentration increases. The electron-acceptor concentration does not affect q m, ap , but K ap is directly proportional to its concentration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    ISSN: 1572-9729
    Keywords: Acinetobacter ; biodegradation ; carbon nitrogen ratio ; kinetics ; phenol ; sand
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In polluted soil or ground water, inorganic nutrients such as nitrogen may be limiting, so that Monod kinetics for carbon limitation may not describe microbial growth and contaminant biodegradation rates. To test this hypothesis we measured14CO2 evolved by a pure culture ofAcinetobacter johnsonii degrading 120 µg14C-phenol per ml in saturated sand with molar carbon:nitrogen (CN) ratios ranging from 1.5 to 560. We fit kinetics models to the data using non-linear least squares regression. Phenol disappearance and population growth were also measured at CN1.5 and CN560. After a 5- to 10-hour lag period, most of the14CO2 evolution curves at all CN ratios displayed a sigmoidal shape, suggesting that the microbial populations grew. As CN ratio increased, the initial rate of14CO2 evolution decreased. Cell growth and phenol consumption occurred at both CN1.5 and CN560, and showed the same trends as the14CO2 data. A kinetics model assuming population growth limited by a single substrate best fit the14CO2 evolution data for CN1.5. At intermediate to high CN ratios, the data were best fit by a model originally formulated to describe no-growth metabolism of one substrate coupled with microbial growth on a second substrate. We suggest that this dual-substrate model describes linear growth on phenol while nitrogen is available and first-order metabolism of phenol without growth after nitrogen is depleted.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    ISSN: 1573-3017
    Keywords: rubidium ; cesium ; kinetics ; clearance-volume model ; fish
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract We used a two-compartment, clearance volume-based model to examine rubidium and cesium pharmacokinetics in channel catfish (Ictalurus punctatus) after intravascular administration. We compared the apparent volumes of distribution in the central and peripheral compartments and the intercompartmental and whole-body clearances of both metals at 20.0 °C and 27.5 °C. Biological half-times of Rb were 15 to 16 d at both temperatures, but Cs biological half-times averaged 101 d and 85 d at 20.0 °C and 27.5 °C, respectively (5 to 7 times longer than those of Rb in the same individual). Both the intercompartmental and total body clearances of Rb were also 6 to 7 times greater than those of Cs. The apparent volumes of distribution for Rb in the central compartments were twice those of Cs and remained constant with temperature. The apparent volumes of distribution of both elements in peripheral compartments were large compared with their corresponding central compartments, and decreased by a similar extent with increased temperature. Cesium tissue to blood ratios were greatest for white muscle, with more than 85% of the Cs present in this tissue. Partitioning of Cs in peripheral tissues apparently decreased with increased temperature conditions. Our results indicate that application of pharmacokinetic modeling techniques can enhance studies of radionuclide kinetics by helping to identify rate-limiting processes within individuals that may control uptake and elimination.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    ISSN: 1573-2932
    Keywords: fractionation ; redistribution ; saturation ; kinetics ; heavy metals
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Solid-phase transformations of Cd, Cu, Cr, Ni and Zn, added as soluble salts at several levels to two arid-zone soils, were studied over a period of one year. The soils were maintained under a saturated-paste regime and sampled periodically. A selective sequential dissolution procedure was employed to determine the changes in metal distribution among six operationally defined solid-phase fractions. A function,U ts was introduced to measure the fractional attainment of equilibrium of the soils following a perturbation. The direction and rate of redistribution of the added metals in the soils were affected by the nature of the metal, the soil properties and the metal loading level. Cd added to the soils was transferred from the exchangeable (EXC) into the carbonate (GARB) fraction. When soluble Cu, Cr, Ni and Zn were added at low loading levels, metals were transferred from the reducible oxides(RO) bound and easily reducible oxides (ERO) bound fractions and the EXC fraction, into the CARB fraction. However, at the higher loading level, metals were transferred from the EXC and CARB fractions into the organic matter bound (OM), ERO and RO fractions. TheU ts function approached lower values as incubation continued but remained removed from 1. The overall flux of metals among fractions was the combined result of the readjustment of the metals in the native soil to changing conditions due to saturation, and the transfer of added soluble metals to the less labile fractions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 90 (1996), S. 295-300 
    ISSN: 1573-2932
    Keywords: dechlorination ; coulometry ; sulfite ; water ; rate ; chloramine ; residual ; kinetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The kinetics of dechlorination show that chlorinated organic amines are not completely dechlorinated during typical contact times. Analytical techniques for measuring residual sulfite must maintain pH neutrality in order to represent the actual extent of dechlorination and must allow for rapid and convenient operation near the sampling site in order to minimize errors due to air oxidation during the procedure. A portable, analog circuitry-based instrument using constant current coulometry with amperometric end point detection was developed and evaluated. laboratory and field operation of the instrument showed an analytical range of 0.015-to-25.0 mg sulfite/l. Relative standard deviation was typically 1–2%.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    ISSN: 1573-2932
    Keywords: arid-zone soils ; field capacity ; fractionation ; heavy metals ; kinetics ; redistribution ; transformation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Solid-phase transformation of added Cd, Cu, Cr, Ni, Pb and Zn, in two arid-zone soils incubated in the field capacity moisture regime for one year, were studied. The heavy metals were fractionated into six empirically defined fractions using a selective sequential dissolution (SSD) protocol optimized for arid-zone soils. Each of these fractions was named based on the major soil component targeted for dissolution during the specific SSD step, but it is not assumed that they are mineralogically and chemically totally specific. The transformations of the metals in the two soils incubated at the field capacity regime were compared with those at the moisture saturation regime (Han and Banin, 1997). An initial fast stage of transformation of the soluble metals from the exchangeable (EXC) fraction to the less labile fractions (the carbonate (CARB) fraction for Cd, Pb, Zn, Ni and Cu, and the organic matter (OM) fraction for Cr, and to some extent Cu and Ni) occurred during the fractionation and within one hour after addition. This was followed by a second stage, involving long-term transformation processes of all metals: added Cd was transferred from the EXC into the CARB fraction; added Cr was transferred from the CARB to the OM fraction and Pb was transferred very slowly to the easily reducible oxide (ERO) fraction. Added Cu, Ni and Zn were transferred from the EXC and CARB fractions into the ERO fraction and to some extent OM and RO fractions. In Part I of this series, we reported that during incubation in the saturated moisture regime, Zn and Ni were transferred mainly into the RO and OM fractions. Cadmium, Cr and Pb underwent the same transformation pathways during the slow long-term process, with slightly different rates, in both water regimes. At low levels of addition, the incubated soils moved over one year towards a distribution similar to that of the native soil. At higher levels, the soils still remained removed from the quasi-equilibrium which characterized the native soil, even at the end of one year of incubation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 109 (1999), S. 429-442 
    ISSN: 1573-2932
    Keywords: electrochemical treatment ; kinetics ; nitrite ; stainless steel electrodes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The efficiency of nitrite removal in an electrochemical cell was investigated in this study using stainless steel electrodes. The experiments were designed to study the effects of current input, volume of the solution, initial pH, and number of electrodes on removal of nitrite at a concentration typical to aquaculture system effluents. Current variation causes opposite trends, while an increase in current would increase the oxidizing efficiency of the system, the voltage induced increase in pH due to hydrogen evolution would decrease the efficiency of the oxidizing agent formed. However, the highest nitrite removal was achieved at a current of 2 A and a complete removal was attained after a duration of ten minutes. A first order reaction model was developed to predict the effect of current on nitrite removal. The energy consumption was directly proportional to the initial pH and the solution volume, while it was inversely proportional to the number of electrodes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...