ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer  (3,531,826)
  • Wiley-Blackwell  (471,889)
Collection
Language
Years
  • 1
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2024-01-10
    Description: The volume offers insights into new theoretical approaches that should make it possible to analyse cultural change through migration. It focuses on concrete activities in local contexts and their significance for national narratives. Finally, it presents newer approaches in migration studies that use artistic methods and work with cultural institutions to drive cultural change.
    Description: Der Band bietet Einblick in neue theoretische Ansätze, die ermöglichen sollen, kulturellen Wandel durch Migration zu analysieren. Er richtet den Blick auf konkrete Aktivitäten in lokalen Kontexten und deren Bedeutung für nationale Narrative. Abschließend präsentiert er neuere Ansätze in der Migrationsforschung, die sich künstlerischer Methoden bedienen und mit kulturellen Institutionen zusammenarbeiten, um kulturelle Veränderung voranzutreiben.
    Keywords: Migration; Postmigration; kultureller Wandel; Kunst; Kultur ; ÖFOS 2012 -- SOZIALWISSENSCHAFTEN (5) -- Soziologie (504) -- Soziologie (5040) -- Migrationsforschung (504021) ; ÖFOS 2012 -- GEISTESWISSENSCHAFTEN (6) -- Andere Geisteswissenschaften (605) -- Andere Geisteswissenschaften (6050) -- Kulturwissenschaft (605004) ; Migration; postmigration; cultural change; art; culture ; ÖFOS 2012 -- SOCIAL SCIENCES (5) -- Sociology (504) -- Sociology (5040) -- Migration research (504021) ; ÖFOS 2012 -- HUMANITIES (6) -- Other Humanities (605) -- Other Humanities (6050) -- Cultural studies (605004)
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-12-18
    Description: Cephalopods are well known for their cognitive capabilities and unique behavioural repertoires. Yet, certain life strategies and behaviours are still not fully understood. For instance, coastal octopuses have been documented (mainly through citizen science and TV documentaries) to occasionally leave the water and crawl in intertidal areas. Yet, there is a complete lack of knowledge on this behaviour's physiological and biochemical basis. Within this context, this study aimed to investigate, for the first time, physiological (routine and maximum metabolic rates and aerobic scope) and biochemical (i.e., antioxidant enzymes activities, heat shock protein and ubiquitin levels, DNA damage, lipid peroxidation) responses of the common octopus, Octopus vulgaris, to emersion. The octopuses’ physiological performance was determined by measuring metabolic rates in different emersion treatments and biochemical markers. The size-adjusted maximum metabolic rates (MMRadj) of octopuses exposed to 2:30 min of air exposure followed by re-immersion did not differ significantly from the MMRadj of the chased individuals (control group). Yet, most biochemical markers revealed no significant differences among the different emersion treatments. Our findings showed that O. vulgaris could tolerate exposure to short-term emersion periods due to an efficient antioxidant machinery and cellular repair mechanisms. Alongside, we argue that the use of atmospheric air through the mucus-covered gills and/or cutaneous respiration may also help octopus withstand emersion and crawling on land.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-07
    Description: The sustainability of southern Africa’s natural and managed marine and terrestrial ecosystems is threatened by overuse, mismanagement, population pressures, degradation, and climate change. Counteracting unsustainable development requires a deep understanding of earth system processes and how these are affected by ongoing and anticipated global changes. This information must be translated into practical policy and management interventions. Climate models project that the rate of terrestrial warming in southern Africa is above the global terrestrial average. Moreover, most of the region will become drier. Already there is evidence that climate change is disrupting ecosystem functioning and the provision of ecosystem services. This is likely to continue in the foreseeable future, but impacts can be partly mitigated through urgent implementation of appropriate policy and management interventions to enhance resilience and sustainability of the ecosystems. The recommendations presented in the previous chapters are informed by a deepened scientific understanding of the relevant earth system processes, but also identify research and knowledge gaps. Ongoing disciplinary research remains critical, but needs to be complemented with cross-disciplinary and transdisciplinary research that can integrate across temporal and spatial scales to give a fuller understanding of not only individual components of the complex earth-system, but how they interact.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-07
    Description: The southern African subcontinent and its surrounding oceans accommodate globally unique ecoregions, characterized by exceptional biodiversity and endemism. This diversity is shaped by extended and steep physical gradients or environmental discontinuities found in both ocean and terrestrial biomes. The region’s biodiversity has historically been the basis of life for indigenous cultures and continues to support countless economic activities, many of them unsustainable, ranging from natural resource exploitation, an extensive fisheries industry and various forms of land use to nature-based tourism. Being at the continent’s southern tip, terrestrial species have limited opportunities for adaptive range shifts under climate change, while warming is occurring at an unprecedented rate. Marine climate change effects are complex, as warming may strengthen thermal stratification, while shifts in regional wind regimes influence ocean currents and the intensity of nutrient-enriching upwelling. The flora and fauna of marine and terrestrial southern African biomes are of vital importance for global biodiversity conservation and carbon sequestration. They thus deserve special attention in further research on the impacts of anthropogenic pressures including climate change. Excellent preconditions exist in the form of long-term data sets of high quality to support scientific advice for future sustainable management of these vulnerable biomes.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-01-12
    Description: Microbial carbonates are common components of Quaternary tropical coral reefs. Previous studies revealed that sulfate-reducing bacteria trigger microbial carbonate precipitation in supposedly cryptic reef environments. Here, using petrography, lipid biomarker analysis, and stable isotope data, we aim to understand the formation mechanism of microbial carbonate enclosed in deep fore reef limestones from Mayotte and Mohéli, Comoro Islands, which differ from other reefal microbial carbonates in that they contain less microbial carbonate and are dominated by numerous sponges. To discern sponge-derived lipids from lipids enclosed in microbial carbonate, lipid biomarker inventories of diverse sponges from the Mayotte and Mohéli reef systems were examined. Abundant peloidal, laminated, and clotted textures point to a microbial origin of the authigenic carbonates, which is supported by ample amounts of mono- O -alkyl glycerol monoethers (MAGEs) and terminally branched fatty acids; both groups of compounds are attributed to sulfate-reducing bacteria. Sponges revealed a greater variety of alkyl chains in MAGEs, including new, previously unknown, mid-chain monomethyl- and dimethyl-branched MAGEs, suggesting a diverse community of sulfate reducers different from the sulfate-reducers favoring microbialite formation. Aside from biomarkers specific for sulfate-reducing bacteria, lipids attributed to demosponges (i.e., demospongic acids) are also present in some of the sponges and the reefal carbonates. Fatty acids attributed to demosponges show a higher diversity and a higher proportion in microbial carbonate compared to sponge tissue. Such pattern reflects significant taphonomic bias associated with the preservation of demospongic acids, with preservation apparently favored by carbonate authigenesis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-01
    Description: Biological invasions pose a growing threat to ecosystems, biodiversity, and socio-economic interests. In the European Union, the introduction of non-native species through trade, tourism, and other pathways has led to unintended consequences. Among these non-native species, a subset exhibits negative impacts and is commonly referred to as ‘invasive’. However, the number of non-native species and the proportion considered invasive vary across different member states of the European Union. Classifications and definitions of invasive species also differ among countries potentially leading to an underrepresentation. Here, we use Germany as a case study to highlight gaps in invasive species classifications. The number of non-native species reported as invasive in Germany remains low (~ 14%) compared to other European Union member states (~ 22%), despite Germany’s strong economy, significant research investments, and well-established trade networks. This disparities may be attributed to complex and multifaceted factors, encompassing differences in classifications, variations in research effort and focus, and diverse national priorities. We further propose that the impacts of non-native species on resources and biodiversity may be more likely to be overlooked, principally in large economies reliant on international trade, such as Germany. This oversight could negatively affect conservation efforts and funding for research aimed at improving understanding invasive species threats. We suggest that this underreporting may stem from a focus on maintaining economic growth, which might have taken precedence over addressing the potential ecological and economic impacts of invasive species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-01
    Description: There is growing concern surrounding the pervasive impacts of microplastic pollution, but despite increasing interest in this area there remains limited understanding of its disruption to biological communities and the ecosystem services they provide. One such service is the breakdown of leaf litter in freshwaters by invertebrate shredders, such as Gammarus spp., that directly and indirectly provides resources for many other species. This study investigates the effect of microplastic exposure on leaf consumption by two Gammarus species in Ireland, the native Gammarus duebeni celticus, and the invasive Gammarus pulex. Individuals were exposed to 40-48 mu m polyethylene particles for 24 h at a range of concentrations (20-200,000 MP/L), with the amount of leaf consumption in that time frame recorded. Microplastics did not affect the feeding rate of either species at environmentally relevant concentrations, indicating that ecosystem services currently provided by our study species are sustainable. However, at higher microplastic concentrations the feeding rate of G. d. celticus was significantly reduced, whereas G. pulex remained unaffected, drawing attention to species-specific and native-invader differences in microplastic impacts. The results of our study further contribute to the observed pattern that invasive species, including various amphipod species, often display a higher tolerance to environmental stressors compared to their native counterparts. This research highlights the need for mitigation of ongoing and increasing microplastic pollution that could differentially influence key ecosystem services and functions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-01
    Description: Anthropogenic disturbances, including non-indigenous species (NIS) and climate change, have considerably affected ecosystems and socio-economies globally. Despite the widely acknowledged individual roles of NIS and global warming in biodiversity change, predicting the connection between the two still remains a fundamental challenge and requires urgent attention due to a timely importance for proper conservation management. To improve our understanding of the interaction between climate change and NIS on biological communities, we conducted laboratory experiments to test the temperature and pCO2 tolerance of four gammarid species: two native Baltic Sea species (Gammarus locusta and G. salinus), one Ponto‐Caspian NIS (Pontogammarus maeoticus) and one North American NIS (Gammarus tigrinus). Our results demonstrated that an increase in pCO2 level was not a significant driver of mortality, neither by itself nor in combination with increased temperature, for any of the tested species. However, temperature was significant, and differentially affected the tested species. The most sensitive was the native G. locusta which experienced 100% mortality at 24 °C. The second native species, G. salinus, performed better than G. locusta, but was still significantly more sensitive to temperature increase than either of the NIS. In contrast, NIS performed better than native species with warming, whereby particularly the Ponto-Caspian P. maeoticus did not demonstrate any difference in its performance between the temperature treatments. With the predicted environmental changes in the Baltic Sea, we may expect shifts in distributions of native taxa towards colder areas, while their niches might be filled by NIS, particularly those from the Ponto-Caspian region. Although, northern colder areas may be constrained by lower salinity. Additional studies are needed to confirm our findings across other NIS, habitats and regions to make more general inferences.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-01
    Description: Statistics of regional sterodynamic sea level variability are analyzed in terms of probability density functions of a 100-member ensemble of monthly mean sea surface height (SSH) timeseries simulated with the low-resolution Max Planck Institute Grand Ensemble. To analyze the impact of climate change on sea level statistics, fields of SSH variability, skewness and excess kurtosis representing the historical period 1986-2005 are compared with similar fields from projections for the period 2081-2100 under moderate (RCP4.5) and strong (RCP8.5) climate forcing conditions. Larger deviations of the models SSH statistics from Gaussian are limited to the western and eastern tropical Pacific. Under future climate warming conditions, SSH variability of the western tropical Pacific appear more Gaussian in agreement with weaker zonal easterly wind stress pulses, suggesting a reduced El Nino Southern Oscillation activity in the western warm pool region. SSH variability changes show a complex amplitude pattern with some regions becoming less variable, e.g., off the eastern coast of the north American continent, while other regions become more variable, notably the Southern Ocean. A west (decrease)-east (increase) contrast in variability changes across the subtropical Atlantic under RCP8.5 forcing is related to changes in the gyre circulation and a declining Atlantic Meridional Overturning Circulation in response to external forcing changes. In addition to global mean sea-level rise of 16 cm for RCP4.5 and 24 cm for RCP8.5, we diagnose regional changes in the tails of the probability density functions, suggesting a potential increased in variability-related extreme sea level events under global warmer conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-05
    Description: Seamounts are thought to function as hotspots of megafauna diversity due to their topology and environmental characteristics. However, assessments of megafauna communities inhabiting seamounts, including diversity and density, are scarce. In this study, we provide megafauna diversity and density estimates for a recently discovered, not yet characterized seamount region (Boetius seamounts) west of Cape Verde (N17° 16′, W29° 26′). We investigated the distribution of epibenthic megafauna over a large depth gradient from the seamount’s summit at 1400 m down to 3200 m water depth and provided qualitative and quantitative analyses based on quantified video data. In utilizing an ocean floor observation system (OFOS), calibrated videos were taken as a horizontal transect from the north-eastern flank of the seamount, differentiating between an upper, coral-rich region (−1354/−2358 m) and a deeper, sponge-rich region (−2358/−3218 m). Taxa were morphologically distinguished, and their diversity and densities were estimated and related to substrate types. Both the upper and deeper seamount region hosted unique communities with significantly higher megafauna richness at the seamount’s summit. Megafauna densities differed significantly between the upper (0.297 ± 0.167 Ind./m 2 ) and deeper community (0.112 ± 0.114 Ind./m). The seamount showed a vertical zonation with dense aggregations of deep-sea corals dominating the seamount’s upper region and colonies of the glass sponges Poliopogon amadou dominating the deeper region. The results are discussed in light of detected substrate preferences and co-occurrence of species and are compared with findings from other Atlantic seamounts.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...