ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory | Solomons, MD
    In:  http://aquaticcommons.org/id/eprint/4861 | 130 | 2011-09-29 15:47:49 | 4861 | University of Maryland Center for Environmental Science. Chesapeake Biological Laboratory
    Publication Date: 2021-07-06
    Description: The possible ecological effects of suspended sediments are manifold. Briefly, suspended sediments may cause an increased surface for microorganism growth, fewer temperature fluctuations, chemical adsorption orabsorption, blanketing, mechanical-abrasive actions, and light penetration reduction (Cairns, 1968). Sherk and Cronin (1970) have pointed out that the above effects have been little studied in the estuarine environment. The ecological effects of suspended sediments on fish eggs and larvae may be of prime importance t o the C and D Canal area, an important spawning and primary nursery area for a variety of estuary: e species (Johnson,1972). This section discusses the effects of suspended sediment on the eggs and larvae of striped bass and white perch.
    Description: Army Corps of Engineers, Philadelphia District
    Keywords: Conservation ; Ecology ; Engineering ; Fisheries ; Chesapeake ; Canal ; Natural Resources Institute ; Striped Bass ; White Perch ; Delaware
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Alliance for Coastal Technologies | Solomons, MD
    In:  http://aquaticcommons.org/id/eprint/3112 | 130 | 2011-09-29 17:51:50 | 3112 | University of Maryland Center for Environmental Science. Chesapeake Biological Laboratory
    Publication Date: 2021-07-01
    Description: The ACT workshop "Enabling Sensor Interoperability" addressed the need for protocols at thehardware, firmware, and higher levels in order to attain instrument interoperability within and betweenocean observing systems. For the purpose of the workshop, participants spoke in tern of "instruments" rather than "sensors," defining an instrument as a device that contains one or more sensors or actuators and can convert signals from analog to digital.An increase in the abundance, variety, and complexity of instruments and observing systems suggeststhat effective standards would greatly improve "plug-and-work" capabilities. However, there are few standards or standards bodies that currently address instrument interoperability and configuration.Instrument interoperability issues span the length and breadth of these systems, from the measurementto the end user, including middleware services. There are three major components of instrumentinteroperability including physical, communication, and application/control layers. Participantsidentified the essential issues, current obstacles, and enabling technologies and standards,then came up with a series of short and long term solutions.The top three recommended actions, deemed achievable within 6 months of the release of thisreport are:A list of recommendations for enabling instrument interoperability should be put togetherand distributed to instrument developers.A recommendation for funding sources to achieve instrument interoperability should bedrafted. Funding should be provided (for example through NOPP or an IOOS request forproposals) to develop and demonstrate instrument interoperability technologies involvinginstrument manufacturers, observing system operators, and cyberinfrastructure groups.Program managers should be identified and made to understand that milestones for achievinginstrument interoperability include a) selection of a methodology for uniquely identifyingan instrument, b) development of a common protocol for automatic instrumentdiscovery, c) agreement on uniform methods for measurements, d) enablement of end usercontrolled power cycling, and e) implementation of a registry component for IDS and attributes.The top three recommended actions, deemed achievable within S years of the release of this reportare:An ocean observing interoperability standards body should be established that addresses standards for a) metadata, b) commands, c) protocols, d) processes, e) exclusivity, and f)naming authorities.[PDF contains 48 pages]
    Description: NOAA
    Description: Alliance for Coastal Technologies, CBL/UMCES
    Keywords: Engineering ; Environment
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Alliance for Coastal Technologies | Solomons, MD
    In:  http://aquaticcommons.org/id/eprint/3115 | 130 | 2011-09-29 17:52:01 | 3115
    Publication Date: 2021-07-01
    Description: The co-organized Alliance for Coastal Technologies (ACT) and National Data Buoy Center (NDBC)Workshop "Meteorological Buoy Sensors Workshop" convened in Solomons, Maryland, April 19to 21,2006, sponsored by the University of Maryland Center for Environmental Science (UMCES)Chesapeake Bay Laboratory (CBL), an ACT partner institution. Participants from various sectorsincluding resource managers and industry representatives collaborated to focus on technologies andsensors that measure the near surface variables of wind speed and direction, barometric pressure,humidity and air temperature. The vendor list was accordingly targeted at companies that producedthese types of sensors. The managers represented a cross section of federal, regional and academicmarine observing interests from around the country. Workshop discussions focused on the challengesassociated with making marine meteorological observations in general and problems that werespecific to a particular variable. Discussions also explored methods to mitigate these challengesthrough the adoption of best practices, improved technologies and increased standardization. Someof the key workshop outcomes and recommendations included:0cean.US should establish a committee devoted to observations. The committee wouldhave a key role in developing observing standards.The community should adopt the target cost, reliability and performance standards draftedfor a typical meteorological package to be used by a regional observing system.A forum should be established to allow users and manufacturers to share best practicesfor the employment of marine meteorological sensors. The ACT website would host theforum.Federal activities that evaluate meteorological sensors should make their results publiclyavailable.ACT should extend their evaluation process to include meteorological sensors.A follow on workshop should be conducted that covers the observing of meteorologicalvariables not addressed by this workshop. (pdf contains 18 pages)
    Description: NOAA
    Description: Alliance for Coastal Technologies, CBL/UMCES
    Keywords: Engineering ; Environment
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Alliance for Coastal Technologies | Solomons, MD
    In:  http://aquaticcommons.org/id/eprint/3114 | 130 | 2011-09-29 17:51:58 | 3114 | University of Maryland Center for Environmental Science. Chesapeake Biological Laboratory
    Publication Date: 2021-07-01
    Description: The Alliance for Coastal Technologies (ACT) convened a workshop on Evaluating Approaches and Technologies for Monitoring Organic Contaminants in the Aquatic Environment in Ann Arbor, MI on July 21-23, 2006. The primary objectives of this workshop were to: 1) identify the priority management information needs relative to organic contaminant loading; 2) explore themost appropriate approaches to estimating mass loading; and 3) evaluate the current status of thesensor technology. To meet these objectives, a mixture of leading research scientists, resourcemanagers, and industry representatives were brought together for a focused two-day workshop.The workshop featured four plenary talks followed by breakout sessions in which arranged groupsof participants where charged to respond to a series of focused discussion questions.At present, there are major concerns about the inadequacies in approaches and technologies forquantifying mass emissions and detection of organic contaminants for protecting municipal watersupplies and receiving waters. Managers use estimates of land-based contaminant loadings torivers, lakes, and oceans to assess relative risk among various contaminant sources, determinecompliance with regulatory standards, and define progress in source reduction. However, accuratelyquantifying contaminant loading remains a major challenge. Loading occurs over a range ofhydrologic conditions, requiring measurement technologies that can accommodate a broad rangeof ambient conditions. In addition, in situ chemical sensors that provide a means for acquiringcontinuous concentration measurements are still under development, particularly for organic contaminantsthat typically occur at low concentrations. Better approaches and strategies for estimatingcontaminant loading, including evaluations of both sampling design and sensor technologies,need to be identified. The following general recommendations were made in an effort to advancefuture organic contaminant monitoring:1. Improve the understanding of material balance in aquatic systems and the relationship betweenpotential surrogate measures (e.g., DOC, chlorophyll, particle size distribution) and target constituents.2. Develop continuous real-time sensors to be used by managers as screening measures and triggersfor more intensive monitoring.3. Pursue surrogate measures and indicators of organic pollutant contamination, such as CDOM,turbidity, or non-equilibrium partitioning.4. Develop continuous field-deployable sensors for PCBs, PAHs, pyrethroids, and emerging contaminantsof concern and develop strategies that couple sampling approaches with tools that incorporatesensor synergy (i.e., measure appropriate surrogates along with the dissolved organics toallow full mass emission estimation).[PDF contains 20 pages]
    Description: NOAA
    Description: Alliance for Coastal Technologies, CBL/UMCES
    Keywords: Engineering ; Earth Sciences ; Environment ; Chemistry
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Alliance for Coastal Technologies | Solomons, MD
    In:  http://aquaticcommons.org/id/eprint/3123 | 130 | 2011-09-29 17:52:46 | 3123 | University of Maryland Center for Environmental Science. Chesapeake Biological Laboratory
    Publication Date: 2021-06-25
    Description: (pdf contains 23 pages)
    Description: NOAA
    Description: Alliance for Coastal Technologies, CBL/UMCES
    Keywords: Engineering ; Environment
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Alliance for Coastal Technologies | Solomons, MD
    In:  http://aquaticcommons.org/id/eprint/3118 | 130 | 2011-09-29 17:52:37 | 3118 | University of Maryland Center for Environmental Science. Chesapeake Biological Laboratory
    Publication Date: 2021-06-25
    Description: The Alliance for Coastal Technologies (ACT) Workshop "Making Oxygen MeasurementsRoutine Like Temperature" was convened in St. Petersburg, Florida, January 4th - 6th, 2006. Thisevent was sponsored by the University of South Florida (USF) College of Marine Science, anACT partner institution and co-hosted by the Ocean Research Interactive Observatory Networks(ORION). Participants from researcldacademia, resource management, industry, and engineeringsectors collaborated with the aim to foster ideas and information on how to make measuringdissolved oxygen a routine part of a coastal or open ocean observing system.Plans are in motion to develop large scale ocean observing systems as part of the US IntegratedOcean Observing System (100s; see http://ocean.us) and the NSF Ocean Observatory Initiative(001; see http://www.orionprogram.org/00I/default.hl). These systems will require biologicaland chemical sensors that can be deployed in large numbers, with high reliability, and forextended periods of time (years). It is also likely that the development cycle for new sensors issufficiently long enough that completely new instruments, which operate on novel principles,cannot be developed before these complex observing systems will be deployed. The most likelypath to development of robust, reliable, high endurance sensors in the near future is to movethe current generation of sensors to a much greater degree of readiness. The ACT OxygenSensor Technology Evaluation demonstrated two important facts that are related to the need forsensors. There is a suite of commercially available sensors that can, in some circumstances,generate high quality data; however, the evaluation also showed that none of the sensors were ableto generate high quality data in all circumstances for even one month time periods due tobiofouling issues.Many groups are attempting to use oxygen sensors in large observing programs; however, thereoften seems to be limited communication between these groups and they often do not have accessto sophisticated engineering resources. Instrument manufacturers also do not have sufficientresources to bring sensors, which are marketable, but of limited endurance or reliability, to ahigher state of readiness. The goal of this ACT/ORION Oxygen Sensor Workshop was to bringtogether a group of experienced oceanographers who are now deploying oxygen sensors inextended arrays along with a core of experienced and interested academic and industrialengineers, and manufacturers. The intended direction for this workshop was for this group toexchange information accumulated through a variety of sensor deployments, examine failuremechanisms and explore a variety of potential solutions to these problems. One anticipatedoutcome was for there to be focused recommendations to funding agencies on development needsand potential solutions for 02 sensors. (pdf contains 19 pages)
    Description: NOAA
    Description: Alliance for Coastal Technologies, CBL/UMCES
    Keywords: Engineering ; Environment
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Alliance for Coastal Technologies | Solomons, MD
    In:  http://aquaticcommons.org/id/eprint/3121 | 130 | 2011-09-29 17:52:42 | 3121 | University of Maryland Center for Environmental Science. Chesapeake Biological Laboratory
    Publication Date: 2021-06-25
    Description: The Alliance for Coastal Technologies (ACT) Partner University of Michigan convened aworkshop on the Applications of Drifting Buoy Technologies for Coastal Watershed andEcosystem Modeling in Ann Arbor, Michigan on June 5 to 7,2005.The objectives of the workshop were to: (1) educate potential users (managers and scientists)about the current capabilities and uses of drifting buoy technologies; (2) provide an opportunityfor users (managers and scientists) to experience first hand the deployment and retrieval ofvarious drifting buoys, as well as experience the capabilities of the buoys' technologies; (3)engage manufacturers with scientists and managers in discussions on drifting buoys' capabilitiesand their requirements to promote further applications of these systems; (4) promote a dialogueabout realistic advantages and limitations of current drifting buoy technologies; and (5) developa set of key recommendations for advancing both the capabilities and uses of drifting buoytechnologies for coastal watershed and ecosystem modeling.To achieve these goals, representatives from research, academia, industry, and resourcemanagement were invited to participate in this workshop. Attendees obtained "hands on"experience as they participated in the deployment and retrieval of various drifting buoy systemson Big Portage Lake, a 644 acre lake northwest of Ann Arbor. Working groups then convened fordiscussions on current commercial usages and environmental monitoring approaches including;user requirements for drifting buoys, current status of drifting buoy systems and enablingtechnologies, and the challenges and strategies for bringing new drifting buoys "on-line".The following general recommendations were made to:1). organize a testing program of drifting buoys for marketing their capabilities to resourcemanagers and users.2). develop a fact sheet to highlight the utility of drifting buoys.3). facilitate technology transfer for advancements in drifter buoys that may be occurringthrough military funding and development in order to enhance their technical capabilityfor environmental applications. (pdf contains 18 pages)
    Description: NOAA
    Description: Alliance for Coastal Technologies, CBL/UMCES
    Keywords: Oceanography ; Environment
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Alliance for Coastal Technologies | Solomons, MD
    In:  http://aquaticcommons.org/id/eprint/3106 | 130 | 2011-09-29 17:51:19 | 3106 | University of Maryland Center for Environmental Science. Chesapeake Biological Laboratory
    Publication Date: 2021-07-01
    Description: The Alliance for Coastal Technologies (ACT) Workshop on Towed Vehicles: Undulating PlatformsAs Tools for Mapping Coastal Processes and Water Quality Assessment was convenedFebruary 5-7,2007 at The Embassy Suites Hotel, Seaside, California and sponsored by the ACT-PacificCoast partnership at the Moss Landing Marine Laboratories (MLML). The TUV workshopwas co-chaired by Richard Burt (Chelsea Technology Group) and Stewart Lamerdin (MLMLMarine Operations). Invited participants were selected to provide a uniform representation of theacademic researchers, private sector product developers, and existing and potential data productusers from the resource management community to enable development of broad consensus opinionson the application of TUV platforms in coastal resource assessment and management.The workshop was organized to address recognized limitations of point-based monitoring programs,which, while providing valuable data, are incapable of describing the spatial heterogeneityand the extent of features distributed in the bulk solution. This is particularly true as surveysapproach the coastal zone where tidal and estuarine influences result in spatially and temporallyheterogeneous water masses and entrained biological components. Aerial or satellite based remotesensing can provide an assessment of the aerial extent of plumes and blooms, yet provide no informationregarding the third dimension of these features. Towed vehicles offer a cost-effectivesolution to this problem by providing platforms, which can sample in the horizontal, vertical, andtime-based domains. Towed undulating vehicles (henceforth TUVs) represent useful platformsfor event-response characterization. This workshop reviewed the current status of towed vehicletechnology focusing on limitations of depth, data telemetry, instrument power demands, and shiprequirements in an attempt to identify means to incorporate such technology more routinely inmonitoring and event-response programs. Specifically, the participants were charged to addressthe following: (1) Summarize the state of the art in TUV technologies; (2) Identify how TUVplatforms are used and how they can assist coastal managers in fulfilling their regulatory and managementresponsibilities; (3) Identify barriers and challenges to the application of TUV technologiesin management and research activities, and (4) Recommend a series of community actions toovercome identified barriers and challenges.A series of plenary presentation were provided to enhance subsequent breakout discussions bythe participants. Dave Nelson (University of Rhode Island) provided extensive summaries andreal-world assessment of the operational features of a variety of TUV platforms available in theUNOLs scientific fleet. Dr. Burke Hales (Oregon State University) described the modification ofTUV to provide a novel sampling platform for high resolution mapping of chemical distributionsin near real time. Dr. Sonia Batten (Sir Alister Hardy Foundation for Ocean Sciences) providedan overview on the deployment of specialized towed vehicles equipped with rugged continuousplankton recorders on ships of opportunity to obtain long-term, basin wide surveys of zooplanktoncommunity structure, enhancing our understanding of trends in secondary production in the upperocean. [PDF contains 32 pages]
    Description: NOAA
    Keywords: Engineering ; Environment ; Planning
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Alliance for Coastal Technologies | Solomons, MD
    In:  http://aquaticcommons.org/id/eprint/3107 | 130 | 2011-09-29 17:51:21 | 3107 | University of Maryland Center for Environmental Science. Chesapeake Biological Laboratory
    Publication Date: 2021-07-01
    Description: The Alliance for Coastal Technologies (ACT) convened a workshop, sponsored by the Hawaii-Pacificand Alaska Regional Partners, entitled Underwater Passive Acoustic Monitoring for RemoteRegions at the Hawaii Institute of Marine Biology from February 7-9, 2007. The workshop wasdesigned to summarize existing passive acoustic technologies and their uses, as well as to makestrategic recommendations for future development and collaborative programs that use passiveacoustic tools for scientific investigation and resource management. The workshop was attendedby 29 people representing three sectors: research scientists, resource managers, and technologydevelopers.The majority of passive acoustic tools are being developed by individual scientists for specific applicationsand few tools are available commercially. Most scientists are developing hydrophone-based systems to listen for species-specific information on fish or cetaceans; a few scientists are listening for biological indicators of ecosystem health. Resource managers are interested in passive acoustics primarily for vessel detection in remote protected areas and secondarily to obtain biological and ecological information. The military has been monitoring with hydrophones for decades;however, data and signal processing software has not been readily available to the scientific community, and future collaboration is greatly needed. The challenges that impede future development of passive acoustics are surmountable with greatercollaboration. Hardware exists and is accessible; the limits are in the software and in the interpretationof sounds and their correlation with ecological events. Collaboration with the military and the private companies it contracts will assist scientists and managers with obtaining and developing software and data analysis tools. Collaborative proposals among scientists to receive larger pools of money for exploratory acoustic science will further develop the ability to correlate noise withecological activities. The existing technologies and data analysis are adequate to meet resource managers' needs for vessel detection. However, collaboration is needed among resource managers to prepare large-scale programs that include centralized processing in an effort to address the lack of local capacity within management agencies to analyze and interpret the data. Workshop participants suggested that ACT might facilitate such collaborations through its website and by providing recommendations to key agencies and programs, such as DOD, NOAA, and I00s. There is a need to standardize data formats and archive acoustic environmental data at the national and international levels. Specifically, there is a need for local training and primers for public education, as well as by pilot demonstration projects, perhaps in conjunction with NationalMarine Sanctuaries. Passive acoustic technologies should be implemented immediately to address vessel monitoring needs. Ecological and health monitoring applications should be developed as vessel monitoring programs provide additional data and opportunities for more exploratory research. Passive acoustic monitoring should also be correlated with water quality monitoring to ease integration into long-term monitoring programs, such as the ocean observing systems. [PDF contains 52 pages]
    Description: NOAA
    Keywords: Oceanography ; Earth Sciences ; Environment
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Alliance for Coastal Technologies | Solomons, MD
    In:  http://aquaticcommons.org/id/eprint/3111 | 130 | 2011-09-29 17:51:47 | 3111 | University of Maryland Center for Environmental Science. Chesapeake Biological Laboratory
    Publication Date: 2021-07-01
    Description: The Alliance for Coastal Technologies (ACT) convened a Workshop on "Recent Developments in In Situ Nutrient Sensors: Applications and Future Directions" from 11-13 December, 2006. The workshop was held at the Georgia Coastal Center in Savannah, Georgia, with local coordination provided by the ACT partner at the Skidaway Institute of Oceanography (University System of Georgia). Since its formation in 2000, ACT partners have been conducting workshops on various sensor technologies and supporting infrastructure for sensor systems. This was the first workshop to revisit a topic area addressed previously by ACT.An earlier workshop on the "State of Technology in the Development and Application of Nutrient Sensors" was held in Savannah, Georgia from 10-12 March, 2003. Participants in the first workshop included representatives from management, industry, and research sectors. Among the topics addressed at the first workshop were characteristics of "ideal" in situ nutrient sensors, particularly with regard to applications in coastal marine waters.In contrast, the present workshop focused on the existing commercial solutions. The in situ nutrient sensor technologies that appear likely to remain the dominant commercial options for the next decade are reagent-based in situ auto-analyzers (or fluidics systems) and an optical approach (spectrophotometric measurement of nitrate). The number of available commercial systems has expanded since 2003, and community support for expanded application and further development of these technologies appears warranted. Application in coastal observing systems, including freshwater as well as estuarine and marine environments, was a focus of the present workshop.This included discussion of possible refinements for sustained deployments as part of integrated instrument packages and means to better promote broader use of nutrient sensors in observing system and management applications. The present workshop also made a number of specific recommendations concerning plans for a demonstration of in situ nutrient sensor technologies that ACT will be conducting in coordination with sensor manufacturers.[PDF contains 40 pages]
    Description: NOAA
    Description: Alliance for Coastal Technologies, CBL/UMCES
    Keywords: Engineering ; Environment
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...