ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Boundary currents  (1)
  • Dynamical ocean modeling  (1)
  • Sears Foundation for Marine Research  (2)
  • 1
    facet.materialart.
    Unknown
    Sears Foundation for Marine Research
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author, 2017. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 75 (2017): 435–457, doi:10.1357/002224017821836734.
    Description: Modeling acoustic conditions in an oceanic environment is a multiple-step process. The environmental conditions (features) in the area first must be measured or estimated; relevant features include seabed geometry, seabed composition, and four-dimensionally (4D) variable sound-speed and density variations related to evolving or wave motions. Often the dynamical wave modeling depends on first obtaining correct seabed and mean stratification conditions (for example, nonlinear internal wave modeling). Next, this information must be included in sound propagation modeling. A selection of the many methods and tools available for these tasks are described, with a focus on modeling sounds of 20 to 1000 Hz propagating through water-column features that are time-dependent and variable in three dimensions (i.e., 4D variable). An example of a 3D parabolic equation acoustic calculation shows how variability caused by evolving internal tidal waves affects sound propagation. Different propagation and scattering regimes are discussed, including the theoretically delineated weak scattering and strong scattering regimes, as well as the empirically examined regime found in nonlinear internal waves. The histories and the current state of our oceanographic knowledge (the input to acoustic modeling) and of our ability to effectively model complex acoustic conditions are discussed. Example acoustic simulation applications are also discussed; these are ocean acoustic tomography, coherence prediction, and signal-to-noise ratio prediction. Types of ocean models and acoustic models and how they are interfaced are also examined. These include deterministic, statistical analytic feature models.
    Description: Funding for this work was provided by the U.S. Office of Naval Research, Ocean Acoustics Program, Grants N-00014-11-1-0701 and N00014-14-1-0223.
    Keywords: Acoustic coherence ; Acoustic statistics ; Dynamical ocean modeling ; Internal tides ; Nonlinear internal waves ; Ocean acoustic modeling ; Parabolic equation ; Seabed interacting sound
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © The Authors, 2017. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 75 (2017): 605-639, doi:10.1357/002224017822109505.
    Description: Shipboard hydrographic and velocity sections are used to quantify aspects of the North Icelandic Jet (NIJ), which transports dense overflow water to Denmark Strait, and the North Icelandic Irminger Current (NIIC), which imports Atlantic water to the Iceland Sea. The mean transports of the two currents are comparable, in line with previous notions that there is a local overturning cell in the Iceland Sea that transforms the Atlantic water to dense overflow water. As the NIJ and NIIC flow along the north side of Iceland, they appear to share a common front when the bottom topography steers them close together, but even when they are separate there is a poleward flow inshore of the NIJ. The interannual variability in salinity of the inflowing NIIC is in phase with that of the outflowing NIJ. It is suggested, however, that the NIIC signal does not dictate that of the NIJ. Instead, the combination of liquid and solid freshwater flux from the east Greenland boundary can account for the observed net freshening of the NIIC to the NIJ for the densest half of the overturning circulation in the northwest Iceland Sea. This implies that the remaining overturning must occur in a different geographic area, consistent with earlier model results. The year-to-year variability in salinity of the NIJ can be explained by applying annual anomalies of evaporation minus precipitation over the Iceland Sea to a one-dimensional mixing model. These anomalies vary in phase with the wind stress curl over the North Atlantic subpolar gyre, which previous studies have shown drives the interannual variation in salinity of the inflowing NIIC.
    Description: Funding for the project was provided by the National Science Foundation under grants OCE-1558742 (RSP, MAS, DJT, CN), OCE-1433170 (MAS), and OCE-0959381 (DM); the Norwegian Research Council under grant agreement no. 231647 (KV); the Bergen Research Foundation (KV); the European Union Seventh Framework Programme (FP7 2007-2013) under grant agreement 308299 (NACLIM project, KV, HV, and SJ); and the Natural Sciences and Engineering Research Council of Canada (GWKM).
    Keywords: Boundary currents ; Overturning circulation ; Overflow water
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...