ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Environmental biology of fishes 5 (1980), S. 335-342 
    ISSN: 1573-5133
    Keywords: Fish behavior ; Bioacoustics ; Aquatic sounds ; Reproduction ; Communication
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Synopsis Pairs of Cichlasoma centrarchus were observed daily in the laboratory. Both males and females made sounds during a breeding cycle but all sounds were aggressive in context; no sounds were heard to accompany courtship. Males made more sounds before spawning than afterwards and these were associated with territorial defense and with establishment of dominance over the female. Females produced more sounds after spawning than before, most in the context of brood defense but some toward the male during pre-spawning nest preparation. Prior to spawning, the number of sounds made by the males toward their mates increased but the aggressive actions accompanying them became less intense. No such inverse correlation of agonistic intensity with number of sounds made was found for the females. From this study and earlier ones by the author it was concluded that sound in this species is a threat display which 1) provides an expression for agonism alternative to the performance of actions which could injure the female or drive her away, and 2) lessens the risk of injury to male or female during territory or brood defense.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Bushcrickets ; Ground-living ; Bioacoustics ; Behaviour ; Adaptations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The acoustic behaviour of the closely related tetigoniid species Psorodonotus illyricus and Decticus verrucivorus have been invectigated by bioacoustical and behavioural methods. Both species show adaptations concerning the acoustic behaviour with respect to the biotope and the properties of sound propagation. These insects inhabit low grassland with an average vegetation height of about 20 cm which is also the general height for the song perches. Difficulties arise for efficient acoustic communication in such habitats. Sound propagation is influenced and limited by the strong ground attenuation and the excess damping by grass vegetation. Other limiting factors are the microclimatic conditions in the biotope. The two species counteract these difficulties by moving around in the biotope during stridulation. Both species mainly stridulate in the morning, avoiding problems of reduced sound transmission which often appear in the afternoon due to negative temperature gradients and resulting shadow zones. From the high mobility of these insects, it follows that individuals have no fixed territory and consequently no rivalry against conspecifics, which is very common among Orthopterans with a high degree of territoriality. It can be concluded that the preferred biotope influences and creates behavioural patterns in Orthopterans, especially here in the two investigated species of bushcrickets Psorodonotus illyricus and Decticus verrucivorus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Behavioral ecology and sociobiology 47 (1999), S. 94-103 
    ISSN: 1432-0762
    Keywords: Key words Anurans ; Bioacoustics ; Fossorial organisms
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Variation of the amplification effect of burrows of the leptodactylid frog Eupsophus emiliopugini on conspecific calls generated externally was investigated. Advertisement calls broadcast through a loudspeaker placed in the vicinity of a burrow were monitored with small microphones positioned inside and outside the cavity. For 150 presentations of calls of 15 individuals in 12 burrows, 134 were amplified and 16 were attenuated (range –6–13 dB). The fundamental resonant frequency of burrows, measured with broadcast noise and pure tones, averaged 814 Hz (range 302–1361 Hz) and covaried with burrow length. The dominant frequency of the calls of burrow occupants (average 1062 Hz, range 636–1459 Hz) was not correlated with the fundamental resonant frequency of these cavities. In burrows with low resonant frequencies, externally broadcast calls with high dominant frequencies were attenuated, or amplified to a lower extent than calls with lower dominant frequencies. The dominant frequencies of the calls experienced shifts towards the burrows’ fundamental resonant frequencies. The amplification of calls inside burrows of E. emiliopugini exhibits manifest variability, with considerable potential for facilitating acoustic interactions in this species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Translated from the Russian by Marina A. Svanidze. Edited by J. Christopher Haney and Cheri Recchia.
    Description: This monograph presents new original material on the behavior and bioacoustic signals of the belukha whale in its natural environment. A typological classification of the species' signals is based on researches that were conducted for many years. This book as well contains descriptions of the time-frequency characteristics of the main classes of sounds. Comparison of the behavior and signals of the belukha whale synchronized by time, enabled development of an ethological-acoustical model of individual behavioral activity in search and hunting, and this study reveals the function of certain sounds. Also, the study made it possible to obtain data on the navigational mechanism (or orientation mechanism) and emphasizes the role of sounds in all the different beharioral activities of the belukha whale. Studies conducted at the extreme points of its range enabled, for the first time, comparison of the ethological-acoustic attributes of the belukha whale in the White Sea and the Amur River estuary.
    Keywords: White whale ; Behavior ; Whale sounds ; Sound production by animals ; Bioacoustics ; Delphinapterus leucas ; Cetacea ; Beluga whale
    Repository Name: Woods Hole Open Access Server
    Type: Book
    Format: 7604519 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © The Authors, 2004. This is the author's version of the work. It is posted here by permission of Elsevier B. V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 52 (2005): 123-143, doi:10.1016/j.dsr2.2004.08.016.
    Description: As a part of the GLOBEC-Northeast Pacific project, we investigated variation in the abundance of marine birds in the context of biological and physical habitat conditions in the northern portion of the California Current System (CCS) during cruises during the upwelling season 2000. Continuous surveys of seabirds were conducted simultaneously in June (onset of upwelling) and August (mature phase of upwelling) with ocean properties quantified using a towed, undulating vehicle and a multi-frequency bioacoustic instrument (38-420 kHz). Twelve species of seabirds contributed 99% of the total community density and biomass. Species composition and densities were similar to those recorded elsewhere in the CCS during earlier studies of the upwelling season. At a scale of 2-4 km, physical and biological oceanographic variables explained an average of 25% of the variation in the distributions and abundance of the 12 species. The most important explanatory variables (among 14 initially included in each multiple regression model) were distance to upwelling-derived frontal features (center and edge of coastal jet, and an abrupt, inshore temperature gradient), sea-surface salinity, acoustic backscatter representing various sizes of prey (smaller seabird species were associated with smaller prey and the reverse for larger seabird species), and chlorophyll concentration. We discuss the importance of these variables in the context of what factors may be that seabirds use to find food. The high seabird density in the Heceta Bank and Cape Blanco areas indicate them to be refuges contrasting the low seabird densities currently found in most other parts of the CCS, following decline during the recent warm regime of the Pacific Decadal Oscillation.
    Description: Support from National Science Foundation Grant OCE-0001035, National Oceanic and Atmospheric Administration (NOAA)/Woods Hole Oceanographic Institution-CICOR Grant NA17RJ1223 is gratefully acknowledged.
    Keywords: California Current ; Primary productivity ; Bioacoustics ; Seabird abundance ; Seabird foraging ; Upwelling fronts
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 527314 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 1998. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 103 (1998): 254-264, doi:10.1121/1.421135.
    Description: A modeling study was conducted to determine the conditions under which fluidlike zooplankton of the same volume but different shapes (spherical/cylindrical) have similar or dramatically different scattering properties. Models of sound scattering by weakly scattering spheres and cylinders of finite length used in this analysis were either taken from other papers or derived and herein adapted for direct comparison over a range of conditions. The models were examined in the very low- (ka ≪ 1, kL ≪ 1), moderately low- (ka ≪ 1, kL ≳ 1), and high-frequency regions (ka ≫ 1, kL ≫ 1), where k is the acoustic wave number, a is the radius (spherical or cylindrical) of the body, and L is the length of the cylinders (for an elongated body with L/a = 10, "moderately low" corresponds to the range 0.1 ≲ ka ≲ 0.5). Straight and bent cylinder models were evaluated for broadside incidence, end-on incidence, and averages over various distributions of angle of orientation. The results show that for very low frequencies and for certain distributions of orientation angles at high frequencies, the averaged scattering by cylinders will be similar, if not identical, to the scattering by spheres of the same volume. Other orientation distributions of the cylinders at high frequencies produce markedly different results. Furthermore, over a wide range of orientation distributions the scattering by spheres is dramatically different from that of the cylinders in the moderately low-frequency region and in the Rayleigh/geometric transition region: (1) the Rayleigh to geometric scattering turning point occurs at different points for the two cases when the bodies are constrained to have the same volume and (2) the functional dependence of the scattering levels upon the volume of the bodies in the moderately low-frequency region is quite often different between the spheres and cylinders because of the fact that the scattering by the cylinders is still directional in this region. The study demonstrates that there are indeed conditions under which different shaped zooplankton of the same volume will yield similar (ensemble average) scattering levels, but generally the shape and orientation distribution of the elongated bodies must be taken into account for accurate predictions.
    Description: This work was supported by the U.S. Office of Naval Research Grant No. N00014-95-1-0287 and the National Science Foundation Grant No. OCE-9201264.
    Keywords: Acoustic wave scattering ; Bioacoustics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 1998. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 103 (1998): 236-253, doi:10.1121/1.421110.
    Description: Mathematical scattering models are derived and compared with data from zooplankton from several gross anatomical groups—fluidlike, elastic shelled, and gas bearing. The models are based upon the acoustically inferred boundary conditions determined from laboratory backscattering data presented in part I of this series [Stanton et al., J. Acoust. Soc. Am. 103, 225–235 (1998)]. The models use a combination of ray theory, modal-series solution, and distorted wave Born approximation (DWBA). The formulations, which are inherently approximate, are designed to include only the dominant scattering mechanisms as determined from the experiments. The models for the fluidlike animals (euphausiids in this case) ranged from the simplest case involving two rays, which could qualitatively describe the structure of target strength versus frequency for single pings, to the most complex case involving a rough inhomogeneous asymmetrically tapered bent cylinder using the DWBA-based formulation which could predict echo levels over all angles of incidence (including the difficult region of end-on incidence). The model for the elastic shelled body (gastropods in this case) involved development of an analytical model which takes into account irregularities and discontinuities of the shell. The model for gas-bearing animals (siphonophores) is a hybrid model which is composed of the summation of the exact solution to the gas sphere and the approximate DWBA-based formulation for arbitrarily shaped fluidlike bodies. There is also a simplified ray-based model for the siphonophore. The models are applied to data involving single pings, ping-to-ping variability, and echoes averaged over many pings. There is reasonable qualitative agreement between the predictions and single ping data, and reasonable quantitative agreement between the predictions and variability and averages of echo data.
    Description: This work was supported by the National Science Foundation Grant No. OCE-9201264, the U.S. Office of Naval Research Grant Nos. N00014-89-J-1729, N00014-95-1-0287, and N00014-94-1-0452, and the MIT/WHOI Joint Graduate Education Program.
    Keywords: Backscatter ; Acoustic wave scattering ; Bioacoustics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 1998. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 103 (1998): 225-235, doi:10.1121/1.421469.
    Description: The acoustic scattering properties of live individual zooplankton from several gross anatomical groups have been investigated. The groups involve (1) euphausiids (Meganyctiphanes norvegica) whose bodies behave acoustically as a fluid material, (2) gastropods (Limacina retroversa) whose bodies include a hard elastic shell, and (3) siphonophores (Agalma okeni or elegans and Nanomia cara) whose bodies contain a gas inclusion (pneumatophore). The animals were collected from ocean waters off New England (Slope Water, Georges Bank, and the Gulf of Maine). The scattering properties were measured over parts or all of the frequency range 50 kHz to 1 MHz in a laboratory-style pulse-echo setup in a large tank at sea using live fresh specimens. Individual echoes as well as averages and ping-to-ping fluctuations of repeated echoes were studied. The material type of each group is shown to strongly affect both the overall echo level and pattern of the target strength versus frequency plots. In this first article of a two-part series, the dominant scattering mechanisms of the three animal types are determined principally by examining the structure of both the frequency spectra of individual broadband echoes and the compressed pulse (time series) output. Other information is also used involving the effect on overall levels due to (1) animal orientation and (2) tissue in animals having a gas inclusion (siphonophores). The results of this first paper show that (1) the euphausiids behave as weakly scattering fluid bodies and there are major contributions from at least two parts of the body to the echo (the number of contributions depends upon angle of orientation and shape), (2) the gastropods produce echoes from the front interface and possibly from a slow-traveling circumferential (Lamb) wave, and (3) the gas inclusion of the siphonophore dominates the echoes, but the tissue plays a role in the scattering and is especially important when analyzing echoes from individual animals on a ping-by-ping basis. The results of this paper serve as the basis for the development of acoustic scattering models in the companion paper [Stanton et al., J. Acoust. Soc. Am. 103, 236–253 (1998)].
    Description: This work was supported by the National Science Foundation Grant No. OCE- 9201264, the U.S. Office of Naval Research Grant Nos. N00014-89-J-1729 and N00014-95-1-0287, and the MIT/ WHOI Joint Graduate Education Program.
    Keywords: Bioacoustics ; Acoustic wave scattering ; Fluctuations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2000. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 108 (2000): 535-550, doi:10.1121/1.429584.
    Description: Acoustic backscattering measurements and associated scattering modeling were recently conducted on a type of benthic shelled animal that has a spiral form of shell (Littorina littorea). Benthic and planktonic shelled animals with this shape occur on the seafloor and in the water column, respectively, and can be a significant source of acoustic scattering in the ocean. Modeling of the scattering properties allows reverberation predictions to be made for sonar performance predictions as well as for detection and classification of animals for biological and ecological applications. The studies involved measurements over the frequency range 24 kHz to 1 MHz and all angles of orientation in as small as 1° increments. This substantial data set is quite revealing of the physics of the acoustic scattering by these complex shelled bodies and served as a basis for the modeling. Specifically, the resonance structure of the scattering was strongly dependent upon angle of orientation and could be traced to various types of rays (e.g., subsonic Lamb waves and rays entering the opercular opening). The data are analyzed in both the frequency and time domain (compressed pulse processing) so that dominant scattering mechanisms could be identified. Given the complexity of the animal body (irregular elastic shell with discontinuities), approximate scattering models are used with only the dominant scattering properties retained. Two models are applied to the data, both approximating the body as a deformed sphere: (1) an averaged form of the exact modal-series-based solution for the spherical shell, which is used to estimate the backscattering by a deformed shell averaged over all angles of orientation, and produces reasonably accurate predictions over all k1aesr (k1 is the acoustic wave number of the surrounding water and aesr is the equivalent spherical radius of the body), and (2) a ray-based formula which is used to estimate the scattering at fixed angle of orientation, but only for high k1aesr. The ray-based model is an extension of a model recently developed for the shelled zooplankton Limacina retroversa that has a shape similar to that of the Littorina littorea but swims through the water [Stanton et al., J. Acoust. Soc. Am. 103, 236–253 (1998b)]. Applications of remote detection and classification of the seafloor and water column in the presence of shelled animals are discussed.
    Description: This work was supported by the U.S. Office of Naval Research Grant Nos. N00014-95-1- 0287 and N00014-96-1-0878, and the MIT/WHOI Joint Graduate Education Program.
    Keywords: Bioacoustics ; Acoustic wave scattering ; Backscatter ; Reverberation ; Underwater sound
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 1998. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 104 (1998): 39-55, doi:10.1121/1.424056.
    Description: Distinct frequency dependencies of the acoustic backscattering by zooplankton of different anatomical groups have been observed in our previous studies [Chu et al., ICES J. Mar. Sci. 49, 97–106 (1992); Stanton et al., ICES J. Mar. Sci. 51, 505–512 (1994)]. Based mainly on the spectral information, scattering models have been proposed to describe the backscattering mechanisms of different zooplankton groups [Stanton et al., J. Acoust. Soc. Am. 103, 236–253 (1998b)]. In this paper, an in-depth study of pulse compression (PC) techniques is presented to characterize the temporal, spectral, and statistical signatures of the acoustic backscattering by zooplankton of different gross anatomical classes. Data collected from various sources are analyzed and the results are consistent with our acoustic models. From compressed pulse (CP) outputs for all three different zooplankton groups, two major arrivals from different parts of the animal body can be identified: a primary and a secondary arrival. (1) Shrimplike animals (Euphausiids and decapod shrimp; near broadside incidence only): the primary one is from the front interface (interface closest to the transducer) of the animal and the secondary arrival is from the back interface; (2) gas-bearing animals (Siphonophores): the primary arrival is from the gas inclusion and the secondary arrival is from the body tissue ("local acoustic center of mass"); and (3) elastic shelled animals (Gastropods): the primary one is from the front interface and the secondary arrival corresponds to the subsonic Lamb wave that circumnavigates the surface of the shell. Statistical analysis of these arrivals is used to successfully infer the size of the individual animals. In conjunction with different aspects of PC techniques explored in this paper, a concept of partial wave target strength (PWTS) is introduced to describe scattering by the different CP highlights. Furthermore, temporal gating of the CP output allows rejection of unwanted signals, improves the output signal-to-noise ratio (SNR) of the spectra of selected partial waves of interest, and provides a better understanding of the scattering mechanism of the animals. In addition, it is found that the averaged PWTS can be used to obtain a more quantitative scattering characterization for certain animals such as siphonophores.
    Description: This work was supported by the National Science Foundation under Grant No. OCE-9201264 and the U.S. Office of Naval Research under Grant Nos. N00014-89-J-1729, N00014-94-1-0452, and N00014-95-1-0287.
    Keywords: Matched filters ; Acoustic signal processing ; Backscatter ; Acoustic wave scattering ; Statistical analysis ; Bioacoustics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...