ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-04-05
    Description: Women drinking during pregnancy can result in Fetal Alcohol Spectrum Disorder (FASD), which may feature variable neurodevelopmental deficits, facial dysmorphology, growth retardation, and learning disabilities. Research suggests the human brain is precisely formed through an intrinsic, genetic-cellular expression that is carefully orchestrated by an epigenetic program. This program can be influenced by environmental inputs such as alcohol. Current research suggests the genetic and epigenetic elements of FASD are heavily intertwined and highly dependent on one another. As such, now is the time for investigators to combine genetic, genomic and epigenetic components of alcohol research into a centralized, accessible platform for discussion. Genetic analyses inform gene sets which may be vulnerable to alcohol exposure during early neurulation. Prenatal alcohol exposure indeed alters expression of gene subsets, including genes involved in neural specification, hematopoiesis, methylation, chromatin remodeling, histone variants, eye and heart development. Recently, quantitative genomic mapping has revealed loci (QTLs) that mediate alcohol-induced phenotypes identified between two alcohol-drinking mouse strains. One question to consider is (besides the role of dose and stage of alcohol exposure) why only 5% of drinking women deliver newborns diagnosed with FAS (Fetal Alcohol Syndrome)? Studies are ongoing to answer this question by characterizing genome-wide expression, allele-specific expression (ASE), gene polymorphisms (SNPs) and maternal genetic factors that influence alcohol vulnerability. Alcohol exposure during pregnancy, which can lead to FASD, has been used as a model to resolve the epigenetic pathway between environment and phenotype. Epigenetic mechanisms modify genetic outputs through alteration of 3D chromatin structure and accessibility of transcriptional machinery. Several laboratories have reported altered epigenetics, including DNA methylation and histone modification, in multiple models of FASD. During development DNA methylation is dynamic yet orchestrated in a precise spatiotemporal manner during neurulation and coincidental with neural differentiation. Alcohol can directly influence epigenetics through alterations of the methionine pathway and subsequent DNA or histone methylation/acetylation. Alcohol also alters noncoding RNA including miRNA and transposable elements (TEs). Evidence suggests that miRNA expression may mediate ethanol teratology, and TEs may be affected by alcohol through the alteration of DNA methylation at its regulatory region. In this manner, the epigenetic and genetic components of FASD are revealing themselves to be mechanistically intertwined. Can alcohol-induced epigenomic alterations be passed across generations? Early epidemiological studies have revealed infants with FASD-like features in the absence of maternal alcohol, where the fathers were alcoholics. Novel mechanisms for alcohol-induced phenotypes include altered sperm DNA methylation, hypomethylated paternal allele and heritable epimutations. These studies predict the heritability of alcohol-induced epigenetic abnormalities and gene functionality across generations. We opened a forum to researchers and investigators the field of FASD to discuss their insights, hypotheses, fresh data, past research, and future research themes embedded in this rising field of the genetics and epigenetics of FASD. This eBook is a product of the collective sharing and debate among researchers who have contributed or reviewed each subject.
    Keywords: QH426-470 ; QH301-705.5 ; Q1-390 ; DNA Methylation ; Fetal Alcohol Syndrome ; histone modification ; Epigenetic medicine ; Genomics ; Alcoholism ; transgenerational ; Pregnancy drinking ; FASD ; Gene environmental interaction ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAK Genetics (non-medical)
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-05
    Description: Fungi of the order Pucciniales cause rust diseases on many plants including important crops and trees widely used in agriculture, forestry and bioenergy programs; these encompass gymnosperms and angiosperms, monocots and dicots, perennial and annual plant species. These fungi are obligate biotrophs and -except for a few cases- cannot be cultivated outside their hosts in a laboratory. For this reason, standard functional and molecular genetic approaches to study these pathogens are very challenging and the means to study their biology, i.e. how they infect, develop and reproduce on plant hosts, are rather limited, even though they rank among the most devastating pathogens. Among fungal plant pathogens, rust fungi display the most complex lifecycles with up to five different spore forms and for many rust fungi, unrelated alternate hosts on which sexual and clonal reproduction are achieved. The genomics revolution and particularly the application of new generation sequencing technologies have greatly changed the way we now address biological studies and has in particular accelerated and made feasible, molecular studies on non-model species, such as rust fungi. The goal of this research topic is to gather articles that present recent advances in the understanding of rust fungi biology, their complex lifecycles and obligate biotrophic interactions with their hosts, through the means of genomics. This includes genome sequencing and/or resequencing of isolates, RNA-Seq or large-scale transcriptome analyses, genome-scale detailed annotation of gene families, and comparative analyses among the various rust fungi and, where feasible, with other obligate biotrophs or fungi displaying distinct trophic modes. This Research Topic provides a great opportunity to provide an up-to-date account of rust fungus biology through the lens of genomics, including state-of-the-art technologies developed to achieve this knowledge.
    Keywords: QK1-989 ; Q1-390 ; fungal genomes ; Genetic Variation ; rust fungi ; Resequencing ; Genomics ; Genome Size ; Obligate biotrophy ; tran ; Basidiomycota ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-05
    Description: Abiotic stresses such as high temperature, low-temperature, drought and salinity limit crop productivity worldwide. Understanding plant responses to these stresses is essential for rational engineering of crop plants. In Arabidopsis, the signal transduction pathways for abiotic stresses, light, several phytohormones and pathogenesis have been elucidated. A significant portion of plant genomes (Arabidopsis and rice were mostly studied) encodes for proteins involves in signaling such as receptor, sensors, kinases, phosphatases, transcription factors and transporters/channels. Despite decades of physiological and molecular effort, knowledge pertaining to how plants sense and transduce low and high temperature, low-water availability (drought), water-submergence, microgravity and salinity signals is still a major question for plant biologist. One major constraint hampering our understanding of these signal transduction processes in plants has been the lack or slow pace of application of molecular genomic and genetics knowledge in the form of gene function. In the post-genomic era, one of the major challenges is investigation and understanding of multiple genes and gene families regulating a particular physiological and developmental aspect of plant life cycle. One of the important physiological processes is regulation of stress response, which leads to adaptation or adjustment in response to adverse stimuli. With the holistic understanding of the signaling pathways involving not only one gene family but multiple genes or gene families, plant biologist can lay a foundation for designing and generating future crops, which can withstand the higher degree of environmental stresses (especially abiotic stresses, which are the major cause of crop loss throughout the world) without losing crop yield and productivity. Therefore, in this e-Book, we intend to incorporate the contribution from leading plant biologists to elucidate several aspects of stress signaling by functional genomics approaches.
    Keywords: QK1-989 ; Q1-390 ; Signal Transduction ; biotic stress ; Genomics ; unctional Genomics ; Crop Improvement ; abiotic stress ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-05
    Description: There is considerable interest in pure and applied studies of extremophilic microorganisms, including those (acidophiles) that are active in low pH environments. As elsewhere in microbiology, this is a fast-developing field, and the proposed special issue of Frontiers highlights many of the more recent advances that have been made in this area. Authors from leading scientific groups located in North and South America, Australasia and Europe have contributed to this e-book, and the topics covered include advances in molecular, biochemical, biogeochemical and industrial aspects of acidophile microbiology.
    Keywords: QR1-502 ; Q1-390 ; extremophiles ; Genomics ; acidophiles ; Biochemistry ; Biodiversity ; biogeochemistry ; Acidithiobacillus ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSG Microbiology (non-medical)
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-05
    Description: The human intestine is home of an almost inconceivable large number of microorganisms. The human gut microbiota can therefore be pictured as an organ placed within a host organism. The human gut microbiome, which in total may contain 〉100 times the number of genes present in our genome, endows us with functional features that we did not have to evolve ourselves. It is recognized that intestinal microbiota plays an important role in human health and disease. In fact, gut bacteria other than metabolize dietary components, may play complex roles such as modulation of the immune system and in reduction of gut infections. Variations in the presence and/or abundance of certain components of the intestinal microbiota have repeatedly been observed in patients that suffer from atopic diseases, inflammatory bowel disease, Crohn disease, ulcerative colitis, infectious colitis, colon cancer and diabetes. In this context, bifidobacteria represent one of the most common bacterial members of the human gut microbiota. Bifidobacteria are anaerobic, Gram-positive, irregular or branched rod-shaped bacteria that are commonly found in the gastro-intestinal tracts (GIT) of humans, especially during the first stages of life and most animal and insects. Bifidobacterial fluctuations seem directly associated with health effects and for these reasons they are being exploited as health-promoting or probiotic bacteria. However, despite the extensive commercial exploitation of bifidobacteria as probiotic bacteria, little is known about their impact or dependency on other members of the human gut microbiota or on their host. Genome analyses have highlighted the existence of gene repertoires encoding products that are responsible for the adaptation of bifidobacteria to the human intestine and intense research efforts at international level are ongoing to understand the molecular details of these interactions. Specifically, the molecular interactions that are presumed to exist between bifidobacteria and the human host, as well as interactions between different residents of intestinal microbiota are the main topic of bifidobacterial research communities.
    Keywords: QR1-502 ; Q1-390 ; bifidobacteria ; Genomics ; Gut Microbiota ; Ecology ; Probiogenomics ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSG Microbiology (non-medical)
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-05
    Description: Grasses are diverse, spanning native prairies to high-yielding grain cropping systems. They are valued for their beauty and useful for soil stabilization, pollution mitigation, biofuel production, nutritional value, and forage quality; grasses encompass the most important grain crops in the world. There are thousands of distinct grass species and many have promiscuous hybridization patterns, blurring species boundaries. Resources for advancing the science and knowledgebase of individual grass species or their unique characteristics varies, often proportional to their perceived value to society. For many grasses, limited genetic information hinders research progress. Presented in this research topic is a brief snapshot of creative efforts to apply modern genomics research methodologies to the study of several minor grass species.
    Keywords: QK1-989 ; Q1-390 ; biomass yield ; differential gene expression ; grasses ; RNA-Seq ; Genomics ; Proteomics ; Genotypic diversity ; Stress Tolerance ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Frontiers Media SA
    Publication Date: 2024-04-04
    Description: This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
    Keywords: DNA virus ; giant virus ; large virus ; Genomics ; basic virology ; Phage ; Viral structure ; viral evasion ; resveratrol ; molecular tools ; thema EDItEUR::P Mathematics and Science::PD Science: general issues ; thema EDItEUR::M Medicine and Nursing::MK Medical specialties, branches of medicine::MKF Pathology::MKFM Medical microbiology and virology ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSG Microbiology (non-medical)
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Frontiers Media SA
    Publication Date: 2024-04-04
    Description: This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
    Keywords: Bifidobacteria ; Genomics ; Ecology ; Gut Microbiota ; Probiogenomics ; thema EDItEUR::P Mathematics and Science::PD Science: general issues ; thema EDItEUR::M Medicine and Nursing::MK Medical specialties, branches of medicine::MKF Pathology::MKFM Medical microbiology and virology ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSG Microbiology (non-medical)
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Frontiers Media SA
    Publication Date: 2024-04-04
    Description: This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
    Keywords: polyploid ; Genetics ; Genomics ; evolution ; Genotype by environment (G × E) ; thema EDItEUR::P Mathematics and Science::PD Science: general issues ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-04-04
    Description: A rare disease is a disease that occurs infrequently in the general population, typically affecting fewer than 200,000 Americans at any given time. More than 30 million people in the United States of America (USA) and 350 million people globally suffer from rare diseases. Out of the 7000+ known rare diseases, less than 5% have approved treatments. Rare diseases are frequently chronic, progressive, degenerative, and life-threatening, compromising the lives of patients by loss of autonomy. In the USA, it can take years for a rare disease patient to receive a correct diagnosis. The socioeconomic burden for rare disease is huge. For those living with diagnosed rare diseases, there is no support system or resource bank for navigating financial, educational, or other aspects of having a rare disease. The purpose of this Research Topic is to bring together leading researchers, non-profit organizations, healthcare providers/diagnostic companies, and pharma/biotech/CROs in the field to provide a broad perspective on the latest advances, challenges, and opportunities in rare disease research.
    Keywords: Rare disease ; Genomics ; Next generation sequencing ; transgenic ; genetic analysis ; thema EDItEUR::P Mathematics and Science::PD Science: general issues ; thema EDItEUR::M Medicine and Nursing::MF Pre-clinical medicine: basic sciences::MFN Medical genetics
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...