ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: Stress can undergo rapid temporal changes in volcanic environments, and this is particularly true during eruptions. We use two independent methods, coda wave interferometry (CWI) and shear wave splitting (SWS) analysis to track stress related wave propagation effects during the waning phase of the 2002 NE fissure eruption at Mt Etna. CWI is used to estimate temporal changes in seismic wave velocity, while SWS is employed to monitor changes in elastic anisotropy. We analyse seismic doublets, detecting temporal changes both in wave velocities and anisotropy, consistent with observed eruptive activity. In particular, syn-eruptive wave propagation changes indicate a depressurization of the system, heralding the termination of the eruption, which occurs three days later.
    Description: Published
    Description: 1779-1788
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Interferometry ; Seismic anisotropy ; Volcano seismology ; Volcano monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We present the first application of a time reverse location method in a volcanic setting, for a family of long-period (LP) events recorded on Mt Etna. Results are compared with locations determined using a full moment tensor grid search inversion and cross-correlation method. From 2008 June 18 to July 3, 50 broad-band seismic stations were deployed on Mt Etna, Italy, in close proximity to the summit. Two families of LP events were detected with dominant spectral peaks around 0.9 Hz. The large number of stations close to the summit allowed us to locate all events in both families using a time reversal location method. The method involves taking the seismic signal, reversing it in time, and using it as a seismic source in a numerical seismic wave simulator where the reversed signals propagate through the numerical model, interfere constructively and destructively, and focus on the original source location. The source location is the computational cell with the largest displacement magnitude at the time of maximum energy current density inside the grid. Before we located the two LP families we first applied the method to two synthetic data sets and found a good fit between the time reverse location and true synthetic location for a known velocity model. The time reverse location results of the two families show a shallow seismic region close to the summit in agreement with the locations using a moment tensor full waveform inversion method and a cross-correlation location method.
    Description: Published
    Description: 452-462
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Volcano seismology ; Computational seismology ; Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-03-13
    Description: This article has been accepted for publication in Geophysical Journal International ©: The Authors 2015. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Uploaded in accordance with the publisher's self-archiving policy.
    Description: Mud volcanoes are geological systems often characterized by elevated fluid pressures at depth deviating from hydrostatic conditions. This near-critical state makes mud volcanoes particularly sensitive to external forcing induced by natural or man-made perturbations. We used the Nirano mud volcanic field as a natural laboratory to test pre- and post-seismic effects generated by distant earthquakes.We first characterized the subsurface structure of the Nirano mud volcanic field with a geoelectrical study. Next, we deployed a broad-band seismic station in the area to understand the typical seismic signal generated by the mud volcano. Seismic records show a background noise below 2 s, sometimes interrupted by pulses of drumbeatlike high-frequency signals lasting from several minutes to hours. To date this is the first observation of drumbeat signal observed in mud volcanoes. In 2013 June we recorded a M4.7 earthquake, that occurred approximately 60 km far from our seismic station. According to empirical estimations the Nirano mud volcanic field should not have been affected by the M4.7 earthquake. Yet, before the seismic event we recorded an increasing amplitude of the signal in the 10–20 Hz frequency band. The signal emerged approximately two hours before the earthquake and lasted for about three hours. Our statistical analysis suggests the presence of a possible precursory signal about 10 min before the earthquake.
    Description: Published
    Description: 907–917
    Description: 7A. Geofisica per il monitoraggio ambientale
    Description: JCR Journal
    Keywords: Tomography ; Gas and hydrate systems ; Earthquake interaction, forecasting, and prediction ; Seismicity and tectonics ; Volcano seismology ; Mud volcanism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We present the first application of a time reverse location method in a volcanic setting, for a family of long-period (LP) events recorded on Mt Etna. Results are compared with locations determined using a full moment tensor grid search inversion and cross-correlation method. From 2008 June 18 to July 3, 50 broad-band seismic stations were deployed on Mt Etna, Italy, in close proximity to the summit. Two families of LP events were detected with dominant spectral peaks around 0.9 Hz. The large number of stations close to the summit allowed us to locate all events in both families using a time reversal location method. The method involves taking the seismic signal, reversing it in time, and using it as a seismic source in a numerical seismic wave simulator where the reversed signals propagate through the numerical model, interfere constructively and destructively, and focus on the original source location. The source location is the computational cell with the largest displacement magnitude at the time of maximum energy current density inside the grid. Before we located the two LP families we first applied the method to two synthetic data sets and found a good fit between the time reverse location and true synthetic location for a known velocity model. The time reverse location results of the two families show a shallow seismic region close to the summit in agreement with the locations using a moment tensor full waveform inversion method and a cross-correlation location method.
    Description: In press
    Description: (11)
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Volcano seismology ; Computational seismology ; Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2018. This article is posted here by permission of The Royal Astronomical Society for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 215 (2018): 713–735, doi:10.1093/gji/ggy313.
    Description: Gas flux in volcanic conduits is often associated with long-period oscillations known as seismic tremor (Lesage et al.; Nadeau et al.). In this study, we revisit and extend the ‘magma wagging’and ‘whirling’models for seismic tremor, in order to explore the effects of gas flux on the motion of a magma column surrounded by a permeable vesicular annulus (Jellinek & Bercovici; Bercovici et al.; Liao et al.). We find that gas flux flowing through the annulus leads to a Bernoulli effect, which causes waves on the magma column to become unstable and grow. Specifically, the Bernoulli effects are associated with torques and forces acting on the magma column, increasing its angular momentum and energy. As the displacement of the magma column becomes large due to the Bernoulli effect, frictional drag on the conduit wall decelerates the motions of the column, restoring them to small amplitude. Together, the Bernoulli effect and the damping effect contribute to a self-sustained wagging-and-whirling mechanism that help explain the longevity of long-period seismic tremor.
    Description: This work was supported by National Science Foundation grants EAR-1344538 and EAR-1645057
    Keywords: Physics of magma and magma bodies ; Volcano seismology ; Volcanic gases
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-11-16
    Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2020. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy. All rights reserved.
    Description: In volcanoes, topography, shallow heterogeneity and even shallow morphology can substan- tially modify seismic coda signals. Coda waves are an essential tool to monitor eruption dynamics and model volcanic structures jointly and independently from velocity anomalies: it is thus fundamental to test their spatial sensitivity to seismic path effects. Here, we apply the Multiple Lapse Time Window Analysis (MLTWA) to measure the relative importance of scattering attenuation vs absorption at Mount St Helens volcano before its 2004 erup- tion. The results show the characteristic dominance of scattering attenuation in volcanoes at lower frequencies (3–6 Hz), while absorption is the primary attenuation mechanism at 12 and 18 Hz. Scattering attenuation is similar but seismic absorption is one order of magnitude lower than at open-conduit volcanoes, like Etna and Kilauea, a typical behaviour of a (rela- tively) cool magmatic plumbing system. Still, the seismic albedo (measuring the ratio between seismic energy emitted and received from the area) is anomalously high (0.95) at 3 Hz. A radiative-transfer forward model of far- and near-field envelopes confirms this is due to strong near-receiver scattering enhancing anomalous phases in the intermediate and late coda across the 1980 debris avalanche and central crater. Only above this frequency and in the far-field diffusion onsets at late lapse times. The scattering and absorption parameters derived from MLTWA are used as inputs to construct 2-D frequency-dependent bulk sensitivity kernels for the S-wave coda in the multiple-scattering (using the Energy Transport Equations—ETE) and diffusive (AD, independent of MLTWA results) regimes. At 12 Hz, high coda-attenuation anomalies characterize the eastern side of the volcano using both kernels, in spatial correla- tion with low-velocity anomalies from literature. At 3 Hz, the anomalous albedo, the forward modelling, and the results of the tomographic imaging confirm that shallow heterogeneity beneath the extended 1980 debris-avalanche and crater enhance anomalous intermediate and late coda phases, mapping shallow geological contrasts. We remark the effect this may have on coda-dependent source inversion and tomography, currently used across the world to image and monitor volcanoes. At Mount St Helens, higher frequencies and deep borehole data are necessary to reconstruct deep volcanic structures with coda waves.
    Description: Scottish Alliance for Geosciences Environment and Society and the Kleinman Grant for Volcano Research
    Description: Published
    Description: 169-188
    Description: 1T. Struttura della Terra
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3IT. Calcolo scientifico
    Description: JCR Journal
    Keywords: NorthAmerica ; Wave scattering and diffraction. ; Codawaves ; Seismicattenuation ; Seismic tomography ; Volcano seismology ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...