ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,685,969)
  • Springer Nature  (1,067,166)
  • Oxford University Press  (428,344)
  • Periodicals Archive Online (PAO)  (190,459)
Collection
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Nature Communications, Springer Nature, 15(1), pp. 3232-3232, ISSN: 2041-1723
    Publication Date: 2024-05-31
    Description: Sea-level rise submerges terrestrial permafrost in the Arctic, turning it into subsea permafrost. Subsea permafrost underlies ~ 1.8 million km2 of Arctic continental shelf, with thicknesses in places exceeding 700 m. Sea-level variations over glacial-interglacial cycles control subsea permafrost distribution and thickness, yet no permafrost model has accounted for glacial isostatic adjustment (GIA), which deviates local sea level from the global mean due to changes in ice and ocean loading. Here we incorporate GIA into a pan-Arctic model of subsea permafrost over the last 400,000 years. Including GIA significantly reduces present-day subsea permafrost thickness, chiefly because of hydro-isostatic effects as well as deformation related to Northern Hemisphere ice sheets. Additionally, we extend the simulation 1000 years into the future for emissions scenarios outlined in the Intergovernmental Panel on Climate Change’s sixth assessment report. We find that subsea permafrost is preserved under a low emissions scenario but mostly disappears under a high emissions scenario.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-29
    Description: In this article the author name Matthew Mazloff was incorrectly written as Matthew Mazloeff. The original article has been corrected.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-05-29
    Description: Correction to: Scientific Data, published online 22 June 2023 The original version showed the wrong image for Figure 3, with the image for Figure 4 used for both. This has been corrected in the pdf and HTML versions of the article, with the correct version of Figure 3 replacing the duplicated figure. The dates in the figure captions were also incorrect and have been amended as follows: Figure 3 caption: “from 2019-10-25 - 2020-07-30” modified to “from 2019-10-25 - 2020-05-15” Figure 4 caption: “from 2020-02-25 - 2020-07-30” modified to “from 2020-06-13 - 2020-07-30”.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-05-29
    Description: Snow plays an essential role in the Arctic as the interface between the sea ice and the atmosphere. Optical properties, thermal conductivity and mass distribution are critical to understanding the complex Arctic sea ice system’s energy balance and mass distribution. By conducting measurements from October 2019 to September 2020 on the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, we have produced a dataset capturing the year-long evolution of the physical properties of the snow and surface scattering layer, a highly porous surface layer on Arctic sea ice that evolves due to preferential melt at the ice grain boundaries. The dataset includes measurements of snow during MOSAiC. Measurements included profiles of depth, density, temperature, snow water equivalent, penetration resistance, stable water isotope, salinity and microcomputer tomography samples. Most snowpit sites were visited and measured weekly to capture the temporal evolution of the physical properties of snow. The compiled dataset includes 576 snowpits and describes snow conditions during the MOSAiC expedition.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-05-27
    Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2023. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy. All rights reserved.
    Description: We report on about 20 yr of relative gravity measurements, acquired on Mt. Somma–Vesuvius volcano in order to investigate the hydrological and volcano-tectonic processes controlling the present-day activity of the volcano. The retrieved long-term field of time gravity change (2003–2022) shows a pattern essentially related to the subsidence, which have affected the central part of the volcano, as detected by the permanent GNSS network and InSAR data. After reducing the observations for the effect of vertical deformation, no significant residuals are found, indicating no significant mass accumulation or loss within the volcanic system. In the north-western sector of the study area, at the border of the volcano edifice, however, significant residual positive gravity changes are detected which are associated to ground-water rebound after years of intense exploitation of the aquifers. On the seasonal timescale, we find that stations within the caldera rim are affected by the seasonal hydrological effects, while the gravity stations at the base of the Vesuvius show a less clear correlation. Furthermore, within the caldera rim a multiyear gravity transient is detected with an increase phase lasting about 4 yr followed by a slower decrease phase. Analysis of rain data seem to exclude a hydrological origin, hence, we hypothesize a deeper source related to the geothermal activity, which can be present even if the volcano is in a quiescent state. We infer the depth and volume of the source by inverting the spatial pattern of the gravity field at the peak of the transient. A volume of fluids of 9.5 × 107 m3 with density of 1000 kg m−3 at 2.3 km depth is capable to fit reasonably well the observations. To explain the gravity transient, simple synthetic models are produced, that simulate the ascent of fluids from a deep reservoir up to the depth of 2.3 km and a successive diffusion within the carbonate aquifer hosting the geothermal system. The whole process appears to not significantly affect the seismicity rate and the deformation of the volcano. This study demonstrates the importance of a 4-D gravity monitoring of a volcano to understand its complex gravity signals that cover different spatial and temporal scales. Discriminating the different contributions that mix up in the observed gravity changes, in particular those due to hydrologic/anthropogenic activities form those due to the geothermal dynamics, is fundamental for a complete and reliable evaluation of the volcano state.
    Description: Published
    Description: 1565–1580
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Communications Biology, Springer Nature, 5(1), pp. 562-, ISSN: 2399-3642
    Publication Date: 2024-05-10
    Description: Animal behavior in space and time is structured by the perceived day/night cycle. However, this is modified by the animals’ own movement within its habitat, creating a realized diel light niche (RDLN). To understand the RDLN, we investigated the light as experienced by zooplankton undergoing synchronized diel vertical migration (DVM) in an Arctic fjord around the spring equinox. We reveal a highly dampened light cycle with diel changes being about two orders of magnitude smaller compared to the surface or a static depth. The RDLN is further characterized by unique wavelength-specific irradiance cycles. We discuss the relevance of RDLNs for animal adaptations and interactions, as well as implications for circadian clock entrainment in the wild and laboratory.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-05-10
    Description: The moon’s monthly cycle synchronizes reproduction in countless marine organisms. The mass-spawning bristle worm Platynereis dumerilii uses an endogenous monthly oscillator set by full moon to phase reproduction to specific days. But how do organisms recognize specific moon phases? We uncover that the light receptor L-Cryptochrome (L-Cry) discriminates between different moonlight durations, as well as between sun- and moonlight. A biochemical characterization of purified L-Cry protein, exposed to naturalistic sun- or moonlight, reveals the formation of distinct sun- and moonlight states characterized by different photoreduction- and recovery kinetics of L-Cry’s cofactor Flavin Adenine Dinucleotide. In Platynereis, L-Cry’s sun- versus moonlight states correlate with distinct subcellular localizations, indicating different signaling. In contrast, r-Opsin1, the most abundant ocular opsin, is not required for monthly oscillator entrainment. Our work reveals a photo-ecological concept for natural light interpretation involving a “valence interpreter” that provides entraining photoreceptor(s) with light source and moon phase information.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-05-10
    Description: The right timing of animal physiology and behaviour ensures the stability of populations and ecosystems. To predict anthropogenic impacts on these timings, more insight is needed into the interplay between environment and molecular timing mechanisms. This is particularly true in marine environments. Using high-resolution, long-term daylight measurements from a habitat of the marine annelid Platynereis dumerilii, we found that temporal changes in ultraviolet A (UVA)/deep violet intensities, more than longer wavelengths, can provide annual time information, which differs from annual changes in the photoperiod. We developed experimental set-ups that resemble natural daylight illumination conditions, and automated, quantifiable behavioural tracking. Experimental reduction of UVA/deep violet light (approximately 370–430 nm) under a long photoperiod (16 h light and 8 h dark) significantly decreased locomotor activities, comparable to the decrease caused by a short photoperiod (8 h light and 16 h dark). In contrast, altering UVA/deep violet light intensities did not cause differences in locomotor levels under a short photoperiod. This modulation of locomotion by UVA/deep violet light under a long photoperiod requires c-opsin1, a UVA/deep violet sensor employing Gi signalling. C-opsin1 also regulates the levels of rate-limiting enzymes for monogenic amine synthesis and of several neurohormones, including pigment-dispersing factor, vasotocin (vasopressin/oxytocin) and neuropeptide Y. Our analyses indicate a complex inteplay between UVA/deep violet light intensities and photoperiod as indicators of annual time.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-05-09
    Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2023. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy. All rights reserved.
    Description: In a recent work, we applied the every earthquake a precursor according to scale (EEPAS) probabilistic model to the pseudo-prospective forecasting of shallow earthquakes with magni- tude M 5.0 in the Italian region. We compared the forecasting performance of EEPAS with that of the epidemic type aftershock sequences (ETAS) forecasting model, using the most recent consistency tests developed within the collaboratory for the study of earthquake predictabil- ity (CSEP). The application of such models for the forecasting of Italian target earthquakes seems to show peculiar characteristics for each of them. In particular, the ETAS model showed higher performance for short-term forecasting, in contrast, the EEPAS model showed higher forecasting performance for the medium/long-term. In this work, we compare the performance of EEPAS and ETAS models with that obtained by a deterministic model based on the occur- rence of strong foreshocks (FORE model) using an alarm-based approach. We apply the two rate-based models (ETAS and EEPAS) estimating the best probability threshold above which we issue an alarm. The model parameters and probability thresholds for issuing the alarms are calibrated on a learning data set from 1990 to 2011 during which 27 target earthquakes have occurred within the analysis region. The pseudo-prospective forecasting performance is as- sessed on a validation data set from 2012 to 2021, which also comprises 27 target earthquakes. Tests to assess the forecasting capability demonstrate that, even if all models outperform a purely random method, which trivially forecast earthquake proportionally to the space–time occupied by alarms, the EEPAS model exhibits lower forecasting performance than ETAS and FORE models. In addition, the relative performance comparison of the three models demonstrates that the forecasting capability of the FORE model appears slightly better than ETAS, but the difference is not statistically significant as it remains within the uncertainty level. However, truly prospective tests are necessary to validate such results, ideally using new testing procedures allowing the analysis of alarm-based models, not yet available within the CSEP.
    Description: Published
    Description: 1541–1551
    Description: OST4 Descrizione in tempo reale del terremoto, del maremoto, loro predicibilità e impatto
    Description: JCR Journal
    Keywords: Computational seismology ; Earthquake interaction, forecasting and prediction ; Statistical seismology ; Comparison betwee earthquake forecasting methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-05-09
    Description: To understand the seismic hazard of a subduction zone, it is necessary to know the geometry, location and mechanical characteristics of the interplate boundary below which an oceanic plate is thrust downward. By considering the azimuthal dependence of converted P-to-S (Ps) amplitudes in receiver functions, we have detected the interplate boundary in the Makran subduction zone, revealing significant seismic anisotropy at the base of the accretionary wedge above the slab before it bends down beneath the Jaz Murian basin. This anisotropic feature aligns with a zone of reduced seismic velocity and a high primary/secondary wave velocity ratio (Vp/Vs), as documented in previous studies. The presence of this low-velocity highly anisotropic layer at the base of the accretionary wedge, likely representing a low-strength shear zone, could possibly explain the unusually wide accretionary wedge in Makran. Additionally, it may impact the location and width of the locked zone along the interplate boundary.
    Description: Iranian National Science Foundation (INSF)
    Description: Published
    Description: 64-74
    Description: OST1 Alla ricerca dei Motori Geodinamici
    Description: JCR Journal
    Keywords: Earthquake hazards, Seismic anisotropy, Crustal structure, Subduction zone processes ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...