ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (116,145)
  • Molecular Diversity Preservation International  (116,145)
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (49,604)
  • Electrical Engineering, Measurement and Control Technology  (42,491)
  • Natural Sciences in General  (24,812)
Collection
  • Articles  (116,145)
Years
Journal
Topic
  • 1
    Publication Date: 2020-08-27
    Description: Ice accretion is a phenomenon whereby super-cooled water droplets impinge and accrete on wall surfaces. It is well known that the icing may cause severe accidents via the deformation of airfoil shape and the shedding of the growing adhered ice. To prevent ice accretion, electro-thermal heaters have recently been implemented as a de- and anti-icing device for aircraft wings. In this study, an icing simulation method for a two-dimensional airfoil with a heating surface was developed by modifying the extended Messinger model. The main modification is the computation of heat transfer from the airfoil wall and the run-back water temperature achieved by the heater. A numerical simulation is conducted based on an Euler–Lagrange method: a flow field around the airfoil is computed by an Eulerian method and droplet trajectories are computed by a Lagrangian method. The wall temperature distribution was validated by experiment. The results of the numerical and practical experiments were in reasonable agreement. The ice shape and aerodynamic performance of a NACA 0012 airfoil with a heater on the leading-edge surface were computed. The heating area changed from 1% to 10% of the chord length with a four-degree angle of attack. The simulation results reveal that the lift coefficient varies significantly with the heating area: when the heating area was 1.0% of the chord length, the lift coefficient was improved by up to 15%, owing to the flow separation instigated by the ice edge; increasing the heating area, the lift coefficient deteriorated, because the suction peak on the suction surface was attenuated by the ice formed. When the heating area exceeded 4.0% of the chord length, the lift coefficient recovered by up to 4%, because the large ice near the heater vanished. In contrast, the drag coefficient gradually decreased as the heating area increased. The present simulation method using the modified extended Messinger model is more suitable for de-icing simulations of both rime and glaze ice conditions, because it reproduces the thin ice layer formed behind the heater due to the runback phenomenon.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-27
    Description: The lack of a universal simulation method for triboelectric nanogenerator (TENG) makes the device design and optimization difficult before experiment, which protracts the research and development process and hinders the landing of practical TENG applications. The existing electrostatic induction models for TENGs have limitations in simulating TENGs with complex geometries and their dynamic behaviors under practical movements due to the topology change issues. Here, a dynamic finite element method (FEM) model is proposed. The introduction of air buffer layers and the moving mesh method eliminates the topology change issues during practical movement and allows simulation of dynamic and time-varying behaviors of TENGs with complex 2D/3D geometries. Systematic investigations are carried out to optimize the air buffer thickness and mesh densities, and the optimized results show excellent consistency with the experimental data and results based on other existing methods. It also shows that a 3D disk-type rotating TENG can be simulated using the model, clearly demonstrating the capability and superiority of the dynamic FEM model. Moreover, the dynamic FEM model is used to optimize the shape of the tribo-material, which is used as a preliminary example to demonstrate the possibility of designing a TENG-based sensor.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-27
    Description: In this paper, 3D-printed electromagnetic (or microwave) encoders with synchronous reading based on permittivity contrast, and devoted to the measurement of displacements and velocities, are reported for the first time. The considered encoders are based on two chains of linearly shaped apertures made on a 3D-printed high-permittivity dielectric material. One such aperture chain contains the identification (ID) code, whereas the other chain provides the clock signal. Synchronous reading is necessary in order to determine the absolute position if the velocity between the encoder and the sensitive part of the reader is not constant. Such absolute position can be determined as long as the whole encoder is encoded with the so-called de Bruijn sequence. For encoder reading, a splitter/combiner structure with each branch loaded with a series gap and a slot resonator (each one tuned to a different frequency) is considered. Such a structure is able to detect the presence of the apertures when the encoder is displaced, at short distance, over the slots. Thus, by injecting two harmonic signals, conveniently tuned, at the input port of the splitter/combiner structure, two amplitude modulated (AM) signals are generated by tag motion at the output port of the sensitive part of the reader. One of the AM envelope functions provides the absolute position, whereas the other one provides the clock signal and the velocity of the encoder. These synchronous 3D-printed all-dielectric encoders based on permittivity contrast are a good alternative to microwave encoders based on metallic inclusions in those applications where low cost as well as major robustness against mechanical wearing and aging effects are the main concerns.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-08-26
    Description: This paper presents a vulnerable road user (VRU) tracking algorithm capable of handling noisy and missing detections from heterogeneous sensors. We propose a cooperative fusion algorithm for matching and reinforcing of radar and camera detections using their proximity and positional uncertainty. The belief in the existence and position of objects is then maximized by temporal integration of fused detections by a multi-object tracker. By switching between observation models, the tracker adapts to the detection noise characteristics making it robust to individual sensor failures. The main novelty of this paper is an improved imputation sampling function for updating the state when detections are missing. The proposed function uses a likelihood without association that is conditioned on the sensor information instead of the sensor model. The benefits of the proposed solution are two-fold: firstly, particle updates become computationally tractable and secondly, the problem of imputing samples from a state which is predicted without an associated detection is bypassed. Experimental evaluation shows a significant improvement in both detection and tracking performance over multiple control algorithms. In low light situations, the cooperative fusion outperforms intermediate fusion by as much as 30%, while increases in tracking performance are most significant in complex traffic scenes.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-27
    Description: Failures of marine propulsion components or systems can lead to serious consequences for a vessel, cargo and the people onboard a ship. These consequences can be financial losses, delay in delivery time or a threat to safety of the people onboard. This is why it is necessary to learn about marine propulsion failures in order to prevent worst-case scenarios. This paper aims to provide a review of experimental, analytical and numerical methods used in the failure analysis of ship propulsion systems. In order to achieve that, the main causes and failure mechanisms are described and summarized. Commonly used experimental, numerical and analytical tools for failure analysis are given. Most indicative case studies of ship failures describe where the origin of failure lies in the ship propulsion failures (i.e., shaft lines, crankshaft, bearings, foundations). In order to learn from such failures, a holistic engineering approach is inevitable. This paper tries to give suggestions to improve existing design procedures with a goal of producing more reliable propulsion systems and taking care of operational conditions.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-08-26
    Description: Flat surfaces captured by 3D point clouds are often used for localization, mapping, and modeling. Dense point cloud processing has high computation and memory costs making low-dimensional representations of flat surfaces such as polygons desirable. We present Polylidar3D, a non-convex polygon extraction algorithm which takes as input unorganized 3D point clouds (e.g., LiDAR data), organized point clouds (e.g., range images), or user-provided meshes. Non-convex polygons represent flat surfaces in an environment with interior cutouts representing obstacles or holes. The Polylidar3D front-end transforms input data into a half-edge triangular mesh. This representation provides a common level of abstraction for subsequent back-end processing. The Polylidar3D back-end is composed of four core algorithms: mesh smoothing, dominant plane normal estimation, planar segment extraction, and finally polygon extraction. Polylidar3D is shown to be quite fast, making use of CPU multi-threading and GPU acceleration when available. We demonstrate Polylidar3D’s versatility and speed with real-world datasets including aerial LiDAR point clouds for rooftop mapping, autonomous driving LiDAR point clouds for road surface detection, and RGBD cameras for indoor floor/wall detection. We also evaluate Polylidar3D on a challenging planar segmentation benchmark dataset. Results consistently show excellent speed and accuracy.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-08-26
    Description: In this study, the environmental impacts of various alternative ship fuels for a coastal ferry were assessed by the life cycle assessment (LCA) analysis. The comparative study was performed with marine gas oil (MGO), natural gas, and hydrogen with various energy sources for a 12,000 gross tonne (GT) coastal ferry operating in the Republic of Korea (ROK). Considering the energy imports of ROK, i.e., MGO from Saudi Arabia and natural gas from Qatar, these countries were chosen to provide the MGO and the natural gas for the LCA. The hydrogen is considered to be produced by steam methane reforming (SMR) from natural gas with hard coal, nuclear energy, renewable energy, and electricity in the ROK model. The lifecycles of the fuels were analyzed in classifications of Well-to- Tank, Tank-to-Wake, and Well-to-Wake phases. The environmental impacts were provided in terms of global warming potential (GWP), acidification potential (AP), photochemical potential (POCP), eutrophication potential (EP), and particulate matter (PM). The results showed that MGO and natural gas cannot be used for ships to meet the International Maritime Organization’s (IMO) 2050 GHG regulation. Moreover, it was pointed out that the energy sources in SMR are important contributing factors to emission levels. The paper concludes with suggestions for a hydrogen application plan for ships from small, nearshore ships in order to truly achieve a ship with zero emissions based on the results of this study.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-08-26
    Description: In this study, we proposed a semi-automated and interactive scheme for organ contouring in radiotherapy planning for patients with non-small cell lung cancers. Several organs were contoured, including the lungs, airway, heart, spinal cord, body, and gross tumor volume (GTV). We proposed some schemes to automatically generate and vanish the seeds of the random walks (RW) algorithm. We considered 25 lung cancer patients, whose computed tomography (CT) images were obtained from the China Medical University Hospital (CMUH) in Taichung, Taiwan. The manual contours made by clinical oncologists were taken as the gold standard for comparison to evaluate the performance of our proposed method. The Dice coefficient between two contours of the same organ was computed to evaluate the similarity. The average Dice coefficients for the lungs, airway, heart, spinal cord, and body and GTV segmentation were 0.92, 0.84, 0.83, 0.73, 0.85 and 0.66, respectively. The computation time was between 2 to 4 min for a whole CT sequence segmentation. The results showed that our method has the potential to assist oncologists in the process of radiotherapy treatment in the CMUH, and hopefully in other hospitals as well, by saving a tremendous amount of time in contouring.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-08-27
    Description: We compared the catalytic effects of two polymers (soluble starch and apple pectin) on the flocculation of kaolinite suspension. Moreover, the relationship between the zeta potential value and the time when kaolin particle sedimentation occurred was verified, and the mechanism of flocculation was analyzed. Additionally, a constitutive model was proposed to simulate the non-ideal sedimentation of clay particles in an aqueous system under constant gravity. This model not only considers the inhomogeneity of the solute but also simulates the change in clay concentration with time during the deposition process. This model proposes a decay constant (α) and sedimentation coefficient (s). The model can also be used to calculate the instantaneous sedimentation rate of the clay suspensions at any time and any depth for the settling cylinder. These sedimentary characteristics were simulated by adopting the established deposition model. The results show that the model is capable of predicting the time required for the complete sedimentation of particles in the aqueous system, suggesting the feasibility of engineering wastewater treatment, site dredging, etc.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-08-27
    Description: An essential aspect in the interaction between people and computers is the recognition of facial expressions. A key issue in this process is to select relevant features to classify facial expressions accurately. This study examines the selection of optimal geometric features to classify six basic facial expressions: happiness, sadness, surprise, fear, anger, and disgust. Inspired by the Facial Action Coding System (FACS) and the Moving Picture Experts Group 4th standard (MPEG-4), an initial set of 89 features was proposed. These features are normalized distances and angles in 2D and 3D computed from 22 facial landmarks. To select a minimum set of features with the maximum classification accuracy, two selection methods and four classifiers were tested. The first selection method, principal component analysis (PCA), obtained 39 features. The second selection method, a genetic algorithm (GA), obtained 47 features. The experiments ran on the Bosphorus and UIVBFED data sets with 86.62% and 93.92% median accuracy, respectively. Our main finding is that the reduced feature set obtained by the GA is the smallest in comparison with other methods of comparable accuracy. This has implications in reducing the time of recognition.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...