ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (50,597)
  • Molecular Diversity Preservation International  (49,604)
  • Oxford University Press
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (50,597)
Collection
Publisher
Years
Journal
  • 1
    Publication Date: 2021-10-29
    Description: Due to their low density, magnesium alloys are very appealing for light-weight constructions. However, the use of the most common magnesium alloy, AZ91 (Mg 9 wt.% Al, 1 wt.% Zn), is limited to temperatures below 150 °C due to creep failure. Several alloys with an improved creep resistance have been developed in the past, for example the alloy MRI 230D or Ca-alloyed AZ91 variants. However, there is an ongoing discussion in the literature regarding the mechanisms of the improved creep resistance. One factor claimed to be responsible for the improved creep resistance is the intermetallic phases which form during casting. Another possible explanation is an increased creep resistance due to the formation of precipitates. To gain more insight into the improved creep resistance of MRI 230D, nanoindentation measurements have been performed on the different phases of as-cast, creep-deformed and heat-treated samples of MRI 230D and Ca-alloyed AZ91 variants. These nanoindentation measurements clearly show that the intermetallic phase (IP) of the alloy MRI 230D does not lose strength during creep deformation in contrast to the Ca-alloyed AZ91 variants. High-temperature nanoindentation measurements performed at 200 °C clearly show that the intermetallic phases of the MRI 230D alloy maintain their strength. This is in clear contrast to the Ca-alloyed AZ91 variants, where the IP is significantly softer at 200 °C than at room temperature. Atom probe measurements have been used to gain insight into the differences in terms of chemical composition between the IPs of MRI 230D and the Ca-alloyed AZ91 variants in order to understand the dissimilar behaviour in terms of strength loss with increasing temperature.
    Electronic ISSN: 2075-4701
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-28
    Description: One of the challenges in the future of food production, amidst increasing population and decreasing resources, is developing a sustainable food production system. It is anticipated that robotics will play a significant role in maintaining the food production system, specifically in labor-intensive operations. Therefore, the main goal of this project is to develop a robotic fruit harvesting system, initially focused on the harvesting of apples. The robotic harvesting system is composed of a six-degrees-of-freedom (DOF) robotic manipulator, a two-fingered gripper, a color camera, a depth sensor, and a personal computer. This paper details the development and performance of a visual servo system that can be used for fruit harvesting. Initial test evaluations were conducted in an indoor laboratory using plastic fruit and artificial trees. Subsequently, the system was tested outdoors in a commercial fruit orchard. Evaluation parameters included fruit detection performance, response time of the visual servo, and physical time to harvest a fruit. Results of the evaluation showed that the developed visual servo system has the potential to guide the robot for fruit harvesting.
    Electronic ISSN: 2624-7402
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-28
    Description: To explore the effects of thermal actions on the pore structural features of granite, scanning electron microscope (SEM) and mercury injection experiments were carried out on granite after thermal treatment (25 °C to 400 °C). The pore structure was investigated from various perspectives, including the capillary pressure curve, the pore–throat ratio, the median saturation pressure, the median pore–throat radius, the porosity, the pore volume, and the pore size distribution. Based on mercury intrusion test data, the Winland model of permeability prediction was modified for a high-temperature tight granite reservoir. The results showed that: (1) As the temperature rose, the mercury injection curve was gradually flattened, and the mercury ejection efficiency gradually increased. Meanwhile, the pore–throat ratio and the median saturation pressure decreased exponentially, and the pore connectivity was enhanced. (2) The median pore–throat radius and the porosity of granite increased exponentially as the temperature increased. Above 200 °C, the median pore–throat radius and the porosity increased substantially. (3) The pore volumes of the transitional pores, mesopores and macropores, and the total pore volume inside the granite, increased as the temperature rose. Especially above 200 °C, the transitional pores and the mesopores were prominently developed, and the pore volumes of the transitional pores and the mesopores took up a significantly greater proportion of the total pore volume. (4) As the temperature rose, the pore size distribution of granite became more extensive, the pore–throat structure was obviously developed, and the pore–throat connectivity was enhanced. (5) The relationship between the micropores’ characteristic parameters and the macro-permeability in engineering was established though a modified Winland model, and the modified Winland model had a better prediction effect. The findings provide a solid basis for rock geothermal mining projects and related geotechnical engineering.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-28
    Description: Over the last years, the replacement of traditional polymer modifiers with waste plastics has attracted increasing interest. The implementation of such technology would allow a drastic reduction of both production cost and landfill disposal of wastes. Among all, polyethylene-based plastics have been proved suitable for this purpose. The research activities presented in this paper aim to assess the synergistic effect of polyethylene and Fischer–Tropsch waxes on the viscoelastic properties and performance of the bitumen. In order to reduce the blending time, waxes, and polyethylene need to be added simultaneously. In fact, the presence of the waxes reduces the polarity of the bitumen matrix and increases the affinity with the polymer promoting its dispersion. Results demonstrate that the chain length of the waxes, the form of the added waste polyethylene, and the blending protocol have critical effects on the time-evolution of such properties. Short-chain waxes have a detrimental impact on the rutting resistance regardless of the blending protocol. On the contrary, long-chain waxes improve the overall behavior of the polyethylene-modified binders and, in particular, the resistance to permanent deformations.
    Electronic ISSN: 2073-4360
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-10-28
    Description: In the past few decades, ZrN thin films have been identified as wear resistant coatings for tribological applications. The mechanical and tribological properties of ZrN thin layers depend on internal stress induced by the adopted deposition techniques and deposition parameters such as pressure, temperature, and growth rate. In sputtering deposition processes, the selected target voltage waveform and the plasma characteristics also play a crucial influence on physical properties of produced coatings. In present work, ZrN thin films, obtained setting different values of duty cycle in a reactive bipolar pulsed dual magnetron sputtering plant, were investigated to evaluate their residual stress through the substrate curvature method. A considerable progressive increase of residual stress values was measured at decreasing duty cycle, attesting the significant role of voltage waveform in stress development. An evident correlation was also highlighted between the values of the duty cycle and those of wear factor. The performed analysis attested an advantageous effect of internal stress, having the samples with high compressive stress, higher wear resistance. A downward trend for wear rate with the increase of internal residual stress was observed. The choice of suitable values of duty cycle allowed to produce ceramic coatings with improved tribological performance.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-10-28
    Description: We report that polymerization makes a robust, practically applicable multifunctional optical device with a continuous wavelength tunable over 500 nm spectral range using UV-polymerizable cholesteric liquid crystals (CLCs). It can be used as a circular polarizer generating an extremely high degree of circularly polarized light with |g| = 1.85~2.00. It can also be used for optical notch filters, bandwidth-variable (from ~28 nm to ~93 nm) bandpass filters, mirrors, and intensity-variable beam splitters. Furthermore, this CLC device shows excellent stability owing to the polymerization of CLC cells. Its performance remains constant for a long time (~2 years) after a high-temperature exposure (170 °C for 1 h) and an extremely high laser beam intensity exposure (~143 W/cm2 of CW 532 nm diode laser and ~2.98 MW/cm2 of Nd: YAG pulse laser operation for two hours, respectively). The optical properties of polymerized CLC were theoretically analyzed by Berreman’s 4 × 4 matrix method. The characteristics of this device were significantly improved by introducing an anti-reflection layer on the device. This wavelength-tunable and multifunctional device could dramatically increase optical research efficiency in various spectroscopic works. It could be applied to many instruments using visible and near-infrared wavelengths.
    Electronic ISSN: 2073-4360
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-10-28
    Description: Textile-reinforced mortar (TRM) is a strengthening material in which textiles are attached to reinforced concrete (RC) structures using an inorganic matrix. Although many studies on structural behavior, various factors that affect TRM behavior could not be determined clearly. Especially, the uncertainty in bonds due to inorganic materials was not considered. In this study, the flexural behavior of TRM-strengthened beams was determined considering intermediate crack debonding occurred. The TRM beam strengthening limit and TRM coefficients were defined considering the possibility of premature failure and experimental results of four other research on 22 specimens. Therefore, it is expected that a conservative design would be possible when the suggested strengthening limit coefficient is applied.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-10-28
    Description: Monitoring gait patterns in daily life will provide a lot of biological information related to human health. At present, common gait pressure analysis systems, such as pressure platforms and in-shoe systems, adopt rigid sensors and are wired and uncomfortable. In this paper, a biomimetic porous graphene–SBR (styrene-butadiene rubber) pressure sensor (PGSPS) with high flexibility, sensitivity (1.05 kPa−1), and a wide measuring range (0–150 kPa) is designed and integrated into an insole system to collect, process, transmit, and display plantar pressure data for gait analysis in real-time via a smartphone. The system consists of 16 PGSPSs that were used to analyze different gait signals, including walking, running, and jumping, to verify its daily application range. After comparing the test results with a high-precision digital multimeter, the system is proven to be more portable and suitable for daily use, and the accuracy of the waveform meets the judgment requirements. The system can play an important role in monitoring the safety of the elderly, which is very helpful in today’s society with an increasingly aging population. Furthermore, an intelligent gait diagnosis algorithm can be added to realize a smart gait monitoring system.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-10-28
    Description: Over the last few years, there has been a growing interest in the study of lightweight composite materials. Due to their tailorable properties and unique characteristics (high strength, flexibility and stiffness), glass (GFs) and carbon (CFs) fibers are widely used in the production of advanced polymer matrix composites. Glass Fiber-Reinforced Polymer (GFRP) and Carbon Fiber-Reinforced Polymer (CFRP) composites have been developed by different fabrication methods and are extensively used for diverse engineering applications. A considerable amount of research papers have been published on GFRP and CFRP composites, but most of them focused on particular aspects. Therefore, in this review paper, a detailed classification of the existing types of GFs and CFs, highlighting their basic properties, is presented. Further, the oldest to the newest manufacturing techniques of GFRP and CFRP composites have been collected and described in detail. Furthermore, advantages, limitations and future trends of manufacturing methodologies are emphasized. The main properties (mechanical, vibrational, environmental, tribological and thermal) of GFRP and CFRP composites were summarized and documented with results from the literature. Finally, applications and future research directions of FRP composites are addressed. The database presented herein enables a comprehensive understanding of the GFRP and CFRP composites’ behavior and it can serve as a basis for developing models for predicting their behavior.
    Electronic ISSN: 2073-4360
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-10-28
    Description: Metal nanostructures exhibit specific optical characteristics owing to their localized surface plasmon resonance (LSPR) and have been studied for applications in various optical devices. The LSPR property strongly depends on the size and shape of metal nanostructures; thus, plasmonic devices must be designed and fabricated according to their uses. Nanoimprint lithography (NIL) is an effective process for repeatedly fabricating metal nanostructures with controlled sizes and shapes and require optical properties. NIL is a powerful method for mass-producible, low-cost, and large-area fabrication. However, the process lacks flexibility in adjusting the size and shape according to the desirable optical characteristics because the size and shape of metal nanostructures are determined by a single corresponding mold. Here, we conducted a re-shaping process through the air-plasma etching of a polymer’s secondary mold (two-dimensional nanopillar array made of cyclo-olefin polymer (COP)) to modulate the sizes and shapes of nanopillars; then, we controlled the spectral characteristics of the imprinted plasmonic devices. The relationship between the structural change of the mold, which was based on etching time, and the optical characteristics of the corresponding plasmonic device was evaluated through experiments and simulations. According to evaluation results, the diameter of the nanopillar was controlled from 248 to 139 nm due to the etching time and formation of a pit structure. Consequently, the spectral properties changed, and responsivity to the surrounding dielectric environment was improved. Therefore, plasmonic devices based on the re-shaped COP mold exhibited a high responsivity to a refractive index of 906 nm/RIU at a wavelength of 625 nm.
    Electronic ISSN: 2072-666X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...