ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (36,818)
  • MDPI  (36,818)
  • Energy, Environment Protection, Nuclear Power Engineering  (23,124)
  • Chemistry and Pharmacology  (7,772)
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (5,922)
Collection
Years
Topic
  • 1
    Publication Date: 2015-08-11
    Description: In the present work, the performance of carbon nanotubes (c-CNTs) functionalized polydimethylsiloxane (PDMS) based coatings as extractive phases for in-tube solid phase microextraction (IT-SPME) coupled to Capillary LC (CapLC) has been evaluated. Carboxylic-single walled carbon nanotubes (c-SWNTs) and carboxylic-multi walled carbon nanotubes (c-MWNTs) have been immobilized on the activated surface of PDMS capillary columns. The effect of different percentages of diphenyl groups in the PDMS extractive phase has also been evaluated. The extraction capability of the capillary columns has been tested for different organic pollutants, nitrogen heterocyclic compounds and polycyclic aromatic compounds (PAHs). The results indicated that the use of the c-CNTs-PDMS capillary columns improve pyriproxyfen and mainly PAH extraction. Triazines were better extracted by unmodified TRB-35 and modified c-CNTs-PDMSTRB-5. The results showed that the extraction capability of the c-CNT capillary columns depends not only on the polarity of the analytes (as it occurs with PDMS columns) but also on the interactions that the analytes can establish with the immobilized c-CNTs on the PDMS columns. The extraction efficiency has been evaluated on the basis of the preconcentration rate that can be achieved, and, in this sense, the best c-CNTs-PDMS capillary column for each group of compounds can be proposed.
    Electronic ISSN: 2227-9075
    Topics: Chemistry and Pharmacology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-13
    Description: The Saudi Arabia (SA) climate varies greatly, depending on the geography and the season. According to K ppen and Geiger, the climates of SA is “desert climate”. The analysis of the seasonal rainfall detects that spring and winter seasons have the highestrainfall incidence, respectively. Through the summer,small quantities of precipitation are observed, while autumn received more precipitation more than summer season considering the total annual rainfall. In all seasons, the SW area receives rainfall, with a maximum in spring, whereas in the summer season, the NE and NW areas receive very little quantities of precipitation. The Rub Al-Khali (the SE region) is almost totally dry. The maximum amount of annual rainfall does not always happen at the highest elevation. Therefore, the elevation is not the only factor in rainfall distribution.A great inter-annual change in the rainfall over the SA for the period (1978–2009) is observed. In addition, in the same period, a linear decreasing trend is found in the observed rainfall, whilst in the recent past (1994–2009) a statistically significant negative trend is observed. In the Southern part of the Arabian Peninsula (AP) and along the coast of the Red Sea, it is interesting to note that rainfall increased, whilst it decreased over most areas of SA during the 2000–2009 decade, compared to 1980–1989.Statistical and numerical models are used to predict rainfall over Saudi Arabia (SA). The statistical models based on stochastic models of ARIMA and numerical models based on Providing Regional Climates for Impact Studies of Hadley Centre (PRECIS). Climate and its qualitative character and quantified range of possible future changes are investigated. The annual total rainfall decreases in most regions of the SA and only increases in the south. The summertime precipitation will be the highest between other seasons over the southern, the southwestern provinces and Asir mountains, while the wintertime rainfall will remain the lowest.The climate in the SA is instructed by the El Niño Southern Oscillation (ENSO) and other circulations such as centers of high and low pressure, the North Atlantic Oscillation (NAO) and SOI. Strength and oscillation of subtropical jet stream play a big role in pulling hot, dry air masses of SA.
    Electronic ISSN: 2225-1154
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-04
    Description: The use of a novel micro pressurized liquid extraction (µPLE) method for the isolation of 16 priority pollutant polycyclic aromatic hydrocarbons (PAHs) from various solid samples is explored. The technique employs rapid heating in a single static extraction mode to remove analytes in a matter of seconds from 5–10 mg samples using only 125 µL of solvent. For example, results show that 30 s extractions with toluene at 200 °C produce respective PAH recovery ranges of 90%–130% and 88%–114% from samples of soil and smoked chicken. Comparatively, solids containing significant amounts of biochar were more challenging to extract from. For instance, when using a pure biochar sample matrix, recoveries for the 16 PAHs range from only 33%–66% after 60 s of extraction with toluene at 200 °C. Overall, these extraction results agree very well with those reported when using conventional methods on similar samples. Therefore, the findings indicate that µPLE can potentially provide an alternative sample preparation method for PAHs that is both very rapid and requires little solvent.
    Electronic ISSN: 2227-9075
    Topics: Chemistry and Pharmacology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-05
    Description: Mangroves are found throughout the tropics, providing critical ecosystem goods and services to coastal communities and supporting rich biodiversity. Globally, mangroves are being rapidly degraded and deforested at rates exceeding loss in many tropical inland forests. Madagascar contains around 2% of the global distribution, >20% of which has been deforested since 1990, primarily from over-harvest for forest products and conversion for agriculture and aquaculture. While historically not prominent, mangrove loss in Madagascar’s Mahajamba Bay is increasing. Here, we focus on Mahajamba Bay, presenting long-term dynamics calculated using United States Geological Survey (USGS) national-level mangrove maps contextualized with socio-economic research and ground observations, and the results of contemporary (circa 2011) mapping of dominant mangrove types. The analysis of the USGS data indicated 1050 hectares (3.8%) lost from 2000 to 2010, which socio-economic research suggests is increasingly driven by commercial timber extraction. Contemporary mapping results permitted stratified sampling based on spectrally distinct and ecologically meaningful mangrove types, allowing for the first-ever vegetation carbon stock estimates for Mahajamba Bay. The overall mean carbon stock across all mangrove classes was estimated to be 100.97 ± 10.49 Mg C ha−1. High stature closed-canopy mangroves had the highest average carbon stock estimate (i.e., 166.82 ± 15.28 Mg C ha−1). These estimates are comparable to other published values in Madagascar and elsewhere in the Western Indian Ocean and demonstrate the ecological variability of Mahajamba Bay’s mangroves and their value towards climate change mitigation.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-05
    Description: Aquifers within the Columbia River Basalt Group (CRBG) provide a critical water supply throughout much of the Pacific Northwest of the United States. Increased pumping has resulted in water level declines in this region. Recharge into this aquifer system is generally not well understood. Recent suggestions of probable decades-long droughts in the 21st century add to this problem. We show that geophysical methods can provide useful parameters for improved modeling of aquifers in a primary CRBG aquifer located on the eastern edge of the Columbia Plateau. Groundwater models depend in part on the area, thickness, porosity, storativity, and nature of confinement of this aquifer, most of which are poorly constrained by existing well information and previous stress tests. We have made use of surface gravity measurements, borehole gravity measurements, barometric efficiency estimates, earth tidal response, and earthquake seismology observations to constrain these parameters. We show that the aquifer, despite its persistent drawdown, receives a great deal of recharge annually. Much of the recharge to the aquifer is due to leakage from overlying flows, ultimately tied to precipitation, an important result for future aquifer management in times of sustained drought.
    Electronic ISSN: 2079-9276
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-08-05
    Description: Low flows of the Ilmenau River (1434 km2) in northwest Germany have decreased by about 25% over the last 50 years. In the same period, moderate climate changes have taken place and annual groundwater abstractions for sprinkler irrigation have increased by up to 50 hm3 (million m3), with a strong variation due to the respective prevailing weather conditions. Time-series analyses with multiple regression analysis allow detecting and quantifying different influences on low flows. It is also shown that farmers allocate irrigation water volumes carefully according to seasonal precipitation and temperatures. Decline of groundwater levels in summer and the low flow situation are aggravated by the cumulative effect of higher irrigation in drier years. Groundwater recharge and recovery of the water table have been observed subsequently during the winter season.
    Electronic ISSN: 2079-9276
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-08-05
    Description: Cities’ energy usage accounts for two thirds of global primary energy consumption. Energy efficiency in urban areas is, therefore, one of the most important topics to consider when dealing with urban sustainability. This paper evaluates the goals for increasing energy efficiency and use of renewable energy sources in the areas of transportation, buildings and consumers’ awareness, as stated in the Climate action plan, for the municipality of Eskilstuna, Sweden. The efforts of the municipality to successfully reach their energy efficiency goals, are described in this paper including future perspectives. The results show that although the municipality counts with the advantage of owning and working together with the local housing company and energy provider, in order to reach the established goals, additional strategies need to be considered. For an increased use of renewable energy sources, analysis of rooftops suitable for photovoltaic (PV) installation should be carried out as well as the integration of goals for self-consumption. In the transport field, the city needs to prepare for large-scale electric vehicle (EV) market penetration and to consider different bike or car sharing options. Finally, more specific awareness campaigns are needed to engage the citizens in reducing their energy consumption and living a more sustainable life.
    Electronic ISSN: 2079-9276
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-08-08
    Description: Drought is a serious natural hazard with far-reaching impacts including soil damages, economic losses, and threatening the livelihood and health of local residents. The goal of the present work was to monitor the vegetation health across Lebanon in 2014 using remote sensing techniques. Landsat images datasets, with a spatial resolution of 30 m and from different platforms, were used to identify the VCI (Vegetation Condition Index) and TCI (Temperature Condition Index). The VCI was based on the Normalized Difference Vegetation Index (NDVI) datasets. The TCI used land surface temperature (LST) datasets. As a result, the VHI (Vegetation Health Index) was produced and classified into five categories: extreme, severe, moderate, mild, and no drought. The results show practically no extreme drought (~0.27 km2) in the vegetated area in Lebanon during 2014. Moderate to severe drought mainly occurred in the north of Lebanon (i.e., the Amioun region and the plain of Akkar). The Tyr region and the Bekaa valley experienced a low level of drought (mild drought). This approach allows decision makers to monitor, investigate and resolve drought conditions more effectively.
    Electronic ISSN: 2225-1154
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-08-20
    Description: Many studies have revealed the cyclicity of past ocean/atmosphere dynamics at a wide range of time scales (from decadal to millennial time scales), based on the spectral analysis of time series of climate proxies obtained from deep sea sediment cores. Among the many techniques available for spectral analysis, the maximum entropy method and the Thomson multitaper approach have frequently been used because of their good statistical properties and high resolution with short time series. The novelty of the present study is that we compared the two methods by according to the performance of their statistical tests to assess the statistical significance of their power spectrum estimates. The statistical significance of maximum entropy estimates was assessed by a random permutation test (Pardo-Igúzquiza and Rodríguez-Tovar, 2000), while the statistical significance of the Thomson multitaper method was assessed by an F-test (Thomson, 1982). We compared the results obtained in a case study using simulated data where the spectral content of the time series was known and in a case study with real data. In both cases the results are similar: while the cycles identified as significant by maximum entropy and the permutation test have a clear physical interpretation, the F-test with the Thomson multitaper estimator tends to find as no significant the peaks in the low frequencies and tends to give as significant more spurious peaks in the middle and high frequencies. Nevertheless, the best strategy is to use both techniques and to use the advantages of each of them.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-08-20
    Description: Soil water potential (Ψ) controls the dynamics of water in soils and can therefore affect greenhouse gas fluxes. We examined the relationship between soil moisture content (θ) at five different levels of water potential (Ψ = 0, −0.05, −0.1, −0.33 and −15 bar) and greenhouse gas (carbon dioxide, CO2; nitrous oxide, N2O and methane, CH4) fluxes. The study was conducted in 2011 in a silt loam soil at Freeman farm of Lincoln University. Soil samples were collected at two depths: 0–10 and 10–20 cm and their bulk densities were measured. Samples were later saturated then brought into a pressure plate for measurements of Ψ and θ. Soil air samples for greenhouse gas flux analyses were collected using static and vented chambers, 30 cm in height and 20 cm in diameter. Determination of CO2, CH4 and N2O concentrations from soil air samples were done using a Shimadzu Gas Chromatograph (GC-14). Results showed that there were significant correlations between greenhouse gas fluxes and θ held at various Ψ in the 0–10 cm depth of soil group. For instance, θ at Ψ = 0 positively correlated with measured CO2 (p = 0.0043, r = 0.49), N2O (p = 0.0020, r = 0.64) and negatively correlated with CH4 (p = 0.0125, r = −0.44) fluxes. Regression analysis showed that 24%, 41% and 19% of changes in CO2, N2O and CH4 fluxes, respectively, were due to θ at Ψ = 0 (p 〈 0.05). This study stresses the need to monitor soil water potential when monitoring greenhouse gas fluxes.
    Electronic ISSN: 2225-1154
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2015-08-20
    Description: Estimates of bed roughness used for predictions of sediment transport are usually derived either from simple scalars of the physical roughness (i.e., ripple height or grain size) or from the hydrodynamic roughness length (Zo) based upon velocity gradient estimates in the benthic boundary layer. Neither parameter accounts for irregular bed features. This study re-evaluates the relation between hydrodynamic roughness and physical bed roughness using high-resolution seabed scanning in the inlet of a shallow lagoon. The statistically-robust relationship, based on a 1D statistical analysis of the seabed elevation at different locations of the Cabras lagoon. Sardinia, has been obtained between Zo and the topographical bed roughness Ks by defining Ks = 2*STD + skin friction, with STD the standard deviation of the seabed elevation variations. This correlation between Ks and Zo demonstrates that the roughness length is directly influenced by irregular bed features, and that the Reynolds number accounts for the total drag of the bed: the data points collapse on the Law of the Wall curves with a fitting factor x = 0.5. Further testing must be done in other locations and in the fully-rough domain in order to test how widely those new parameters can be applied.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2015-08-20
    Description: A device (prototype) with a working volume of 200 L was used to deplete olive mill wastewater (OMW) of polyphenols. The OMW transformed into feedstock by means of the device was then used for feeding a lab-scale photobioreactor, just for testing the production of bioH2. The main novelty of this prototype consists in the combination of several adsorbent matrices and the exploitation of their synergic action. In this investigation, three matrices have been used: active carbon, Azolla and zeolite. The device was operated at an olive oil company located in the heart of the Chianti zone (Province of Florence, Italy). The efficiency of polyphenol removal obtained using the device was ≥96%. The multi-matrix effluent (MMeff) generated was then used to obtain three different culture broths containing 25%, 50% and 100% of MMeff, respectively. The diluted (with water) culture broths were suitable for hydrogen generation, with the highest hydrogen production rate (12.7 mL H2/Lculture/h) being obtained using 50% MMeff. The hydrogen yields were: 334 mL H2/L of MMeff, when feeding the photofermenter with pure effluent (100%); 1308 mL H2/L of MMeff, with the half-diluted effluent (50%, v/v); and 432 mL H2/L of MMeff, with the highest-diluted effluent (25%, v/v).
    Electronic ISSN: 2079-9276
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2015-08-22
    Description: The microbiological and chemical drinking water quality of 20 vulnerable Finnish small groundwater supplies was studied in relation to environmental risk factors associated with potential sources of contamination. The microbiological parameters analyzed included the following enteric pathogens: Giardia and Cryptosporidium, Campylobacter species, noroviruses, as well as indicator microbes (Escherichia coli, intestinal enterococci, coliform bacteria, Clostridium perfringens, Aeromonas spp. and heterotrophic bacteria). Chemical analyses included the determination of pH, conductivity, TOC, color, turbidity, and phosphorus, nitrate and nitrite nitrogen, iron, and manganese concentrations. Giardia intestinalis was detected from four of the water supplies, all of which had wastewater treatment activities in the neighborhood. Mesophilic Aeromonas salmonicida, coliform bacteria and E. coli were also detected. None of the samples were positive for both coliforms and Giardia. Low pH and high iron and manganese concentrations in some samples compromised the water quality. Giardia intestinalis was isolated for the first time in Finland in groundwater wells of public water works. In Europe, small water supplies are of great importance since they serve a significant sector of the population. In our study, the presence of fecal indicator bacteria, Aeromonas and Giardia revealed surface water access to the wells and health risks associated with small water supplies.
    Electronic ISSN: 2079-9276
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2015-08-12
    Description: For 20 years, the number of resource policy approaches with direct and indirect relations to raw materials, resource and material efficiency has grown enormously at national and international level. This discussion paper makes an inventory of different political and regulatory approaches that contain a direct or indirect reference to resources such as construction materials, industrial minerals, or metals. They are examined and evaluated regarding foci and resource priorities as well as further categories such as target lines, governance levels, indicators used, integration into wider target systems, specification, and implementation. The aim is to provide an overview of the spectrum of resource objectives in international, European, and national strategies, programs, and initiatives. The closer analysis of raw material targets embedded in the policy programs and legal approaches reveals that most goals lack a time frame and a concrete vision, thus remain at a strategic level. To complement the overview, the state of research in the field of modeling and simulation is briefly discussed. Concluding remarks concerning their relation to the objectives identified and the task of target setting complete the discussion.
    Electronic ISSN: 2079-9276
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-08-13
    Description: Bubbles generated by breaking waves can drive significant gas exchange between the ocean and atmosphere, but the role of bubble-mediated gas transfer in estuaries is unknown. Here, backscatter data from 41 acoustic Doppler current profiler stations was analyzed to assess subsurface bubble distributions in nine estuaries along the U.S. East and Gulf Coast. Wind speed, wind direction, and current velocity were the dominant controls on bubble entrainment, but the relative importance of these physical drivers depended on local geomorphology. Bubble entrainment in high-current or shallow, long-fetch estuaries began at wind speeds 〈5 m s−1. In deep or fetch-limited estuaries, bubble entrainment was less frequent and generally began at higher wind speeds. Data observed during several storms suggests that episodic bubble-driven gas exchange may be an important component of annual CO2 fluxes in large, shallow estuaries but would be less significant in other coastal systems.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-08-05
    Description: Heat flow of the sedimentary succession of the Eastern Canada Sedimentary Basins varies from 40 mW/m2 close to the exposed shield in the north to high 60–70 mW/m2 in the southwest–northeast St. Lawrence corridor. As high fluid flow rates are required for a successful geothermal application, the most important targets are deep existing permeable aquifers rather than hard rock, which would need to be fracked. Unfortunately, the ten most populated Québec urban centers are in the areas where the Grenville (Canadian Shield) is exposed or at shallow depths with sedimentary cover where temperatures are 30 °C or less. The city of Drummondville will be the exception, as the basement deepens sharply southwest, and higher temperatures reaching >120 °C are expected in the deep Cambrian sedimentary aquifers near a 4–5-km depth. Deep under the area where such sediments could be occurring under Appalachian nappes, temperatures significantly higher than 140 °C are predicted. In parts of the deep basin, temperatures as high as 80 °C–120 °C exist at depths of 3–4 km, mainly southeast of the major geological boundary: the Logan line. There is a large amount of heat resource at such depths to be considered in this area for district heating.
    Electronic ISSN: 2079-9276
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-08-05
    Description: This research looks at coupling desalination with renewable energy sources to create a high-value product (treated water) from two low value resources (brackish groundwater and intermittent solar energy). Desalination of brackish groundwater is already being considered as a potential new water supply in Texas. This research uses Texas as a testbed for spatially-resolved analysis techniques while considering depth to brackish groundwater, water quality, and solar radiation across Texas to determine the locations with the best potential for integrating solar energy with brackish groundwater desalination. The framework presented herein can be useful for policymakers, regional planners, and project developers as they consider where to site desalination facilities coupled with solar photovoltaics. Results suggest that the northwestern region of Texas—with abundant sunshine and groundwater at relatively shallow depths and low salinity in areas with freshwater scarcity—has the highest potential for solar powered desalination. The range in capacity for solar photovoltaic powered reverse osmosis desalination was found to be 1.56 × 10—6 to 2.93 × 10—5 cubic meters of water per second per square meter of solar panel (m3/s/m2).
    Electronic ISSN: 2079-9276
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-08-05
    Description: Ground source heat pump (GSHP) systems have been proven to have higher efficiency compared to conventional air source heat pump systems for space heating and cooling applications. While vertical ground heat exchangers (GHE) are favorable in GSHP installation, this type of configuration requires higher capital costs as opposed to horizontal configuration. Numerical simulation has been used to accurately predict the thermal performance of GHE. In this paper, numerical analysis of thermal performance for slinky horizontal GHE loops in different orientations and operation modes is discussed. It was found that the loop orientation is not so important due to the little effect it has on thermal performance. While the mean heat exchange rate of copper loop increases 48% compared to HDPE loop, the analysis supports the common claim that heat exchange rate is predominantly limited by the thermal conductivity of the ground. With the same amount of circulation work, the mean heat exchange rate increases by 83%–162% when operated in parallel loops operations. The performance in these operations can be further optimized to 10%–14% increase when spacing between adjacent loops was provided. The spacing helps to minimize interference of heat flow that would penalize the overall thermal performance.
    Electronic ISSN: 2079-9276
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-08-05
    Description: Small Island Developing States (SIDS) of the Pacific over the last decade have established some of the most ambitious renewable energy targets in the world. The promotion of renewable energy has been motivated by a desire to lessen dependence on fossil fuels, given the adverse economic impacts of high oil prices on these countries. Efforts to attract development assistance and to strengthen the position of Pacific SIDS in climate change negotiations have likely also played a role. This paper explores the development of renewable energy resources in the Pacific through a public policy lens. The ambitious renewable energy targets established by Pacific SIDS are argued to be appropriate in some cases, but in other cases are criticised on economic grounds. A potential trade-off is identified between the risk mitigation benefits and poverty alleviation benefits of different renewable technology investments, with questions raised about whether support for the former rather than the latter by development partners is appropriate. A number of institutional and financial challenges to the development of renewable energy resources in Pacific SIDS are also discussed.
    Electronic ISSN: 2079-9276
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-06-04
    Description: We studied genotype by environment interaction (G × E) for body weight (BW) of Atlantic cod (Gadus morhua L.) from the National cod breeding program in Norway. Records of 13,811 fish in a nucleus farm (NUC) and two test farms (PENorth, PESouth) in year-class (YC) 2007, and for 9149 fish in NUC and one test farm in YC 2010 were available. Heterogeneity of variances and heritabilities ( ) were estimated using a univariate animal model with environmental effects common to full-sibs (full-model). Genetic correlations ( ) between farms were estimated using a multivariate full-model and a reduced-model (without ) for each YC. Heterogeneity of  was observed in both YC 2007 (0.10 to 0.16) and YC 2010 (0.08 to 0.26). The estimates of  between NUC and test farms were relatively high for both models (0.81 ± 0.19 to 0.96 ± 0.17) and (0.81 ± 0.08 to 0.86 ± 0.04), suggesting low re-ranking of genotypes. Strong re-ranking of genotypes between PESouth and PENorth may be less important because most cod producers are situated close to the breeding nucleus. In conclusion, G × E between NUC and test farms were low and at present there is no need for separate breeding programs for BW in cod.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2015-06-04
    Description: The State of Wisconsin is located in an unusually water-rich portion of the world in the western part of the Great Lakes region of North America. This article presents an overview of the major groundwater quantity and quality concerns for this region in a geologic context. The water quantity concerns are most prominent in the central sand plain region and portions of a Paleozoic confined sandstone aquifer in eastern Wisconsin. Water quality concerns are more varied, with significant impacts from both naturally occurring inorganic contaminants and anthropogenic sources. Naturally occurring contaminants include radium, arsenic and associated heavy metals, fluoride, strontium, and others. Anthropogenic contaminants include nitrate, bacteria, viruses, as well as endocrine disrupting compounds. Groundwater quality in the region is highly dependent upon local geology and land use, but water bearing geologic units of all ages, Precambrian through Quaternary, are impacted by at least one kind of contaminant.
    Electronic ISSN: 2079-9276
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2015-06-05
    Description: An Unmanned Aerial System (UAS) has been developed which is based on an aerodynamically functionalized planar wideband antenna. The antenna utilizes a planar circular dipole metallization scheme. The aerodynamic structure implements a planform similar to the Nutball flier, a hobbyist flight architecture. The resulting codesign achieved a large impedance bandwidth defined by a voltage standing wave ratio (VSWR) less than 2 from 100 MHz to over 2 GHz and omnidirectional dipole-like radiation patterns at the lower frequency region and more directional patterns at higher frequencies.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2015-06-06
    Description: Multirotor is the umbrella term for the family of unmanned aircraft, which include the quadrotor, hexarotor and other vertical take-off and landing (VTOL) aircraft that employ multiple main rotors for lift and control. Development and testing of novel multirotor designs has been aided by the proliferation of 3D printing and inexpensive flight controllers and components. Different multirotor configurations exhibit specific strengths, while presenting unique challenges with regards to design and control. This article highlights the primary differences between three multirotor platforms: a quadrotor; a fully-actuated hexarotor; and an octorotor. Each platform is modelled and then controlled using non-linear dynamic inversion. The differences in dynamics, control and performance are then discussed.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2015-06-09
    Description: Urbanized areas of the southwestern/western United States are among the fastest growing in the nation and face multiple water resource challenges. Low impact development (LID)/green infrastructure (GI) practices are increasingly popular technologies for managing stormwater; however, LID is often not as common in the southwest/west due to the lack of regulatory and/or economic drivers. There is also a lack of performance evaluation of these practices, particularly at the field scale. This study focused on investigating the hydrologic and pollutant removal performance of field-scale LID/GI systems in arid/semi-arid climates. Nine typical practices were reviewed: rainwater harvest system, detention pond, retention pond, bioretention, media filter, porous pavement, vegetated swale/buffer/strip, green roof, and infiltration trench, as well as integrated LIDs. We evaluate these practices by a cost-effectiveness analysis and also recommend best practices for the arid/semi-arid area. The analysis provides data support and insights for future implementation of LID/GI in the southwest/west.
    Electronic ISSN: 2076-3298
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2015-06-09
    Description: The spatial footprint of unconventional (hydraulic fracturing) and conventional oil and gas development in the Marcellus Shale region of the State of Pennsylvania was digitized from high-resolution, ortho-rectified, digital aerial photography, from 2004 to 2010. We used these data to measure the spatial extent of oil and gas development and to assess the exposure of the extant natural resources across the landscape of the watersheds in the study area. We found that either form of development: (1) occurred in ~50% of the 930 watersheds that defined the study area; (2) was closer to streams than the recommended safe distance in ~50% of the watersheds; (3) was in some places closer to impaired streams and state-defined wildland trout streams than the recommended safe distance; (4) was within 10 upstream kilometers of surface drinking water intakes in ~45% of the watersheds that had surface drinking water intakes; (5) occurred in ~10% of state-defined exceptional value watersheds; (6) occurred in ~30% of the watersheds with resident populations defined as disproportionately exposed to pollutants; (7) tended to occur at interior forest locations; and (8) had >100 residents within 3 km for ~30% of the unconventional oil and gas development sites. Further, we found that exposure to the potential effects of landscape disturbance attributable to conventional oil and gas development was more prevalent than its unconventional counterpart.
    Electronic ISSN: 2076-3298
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2015-08-05
    Description: Large-size (4–5 µm) superficially porous particles yield lower plate heights (e.g., the minimal reduced plate height or hmin ≈ 1.5) than fully porous particles of a similar size when packed into large-bore columns. This property allows for better chromatographic performance without the higher pressures required for smaller particles. This study explores the use of such particles in microfluidic LC columns where materials and fitting pressure limits can constrain the size of particle used. The theoretically predicted performance improvements compared to fully porous particles were not demonstrated in capillary columns (with hmin ≈ 2 for both particle types), in agreement with previous studies that examined smaller superficially porous particles. Microfluidic columns were then compared to capillary columns. Capillary columns significantly outperformed microfluidic columns due to imperfections imposed by microfluidic channel asymmetry and world-to-chip connection at the optimal flow rate; however, superficially porous particles packed in microfluidic LC columns had flatter plate height versus flow rate curves indicating potential for better performance at high reduced velocities.
    Electronic ISSN: 2227-9075
    Topics: Chemistry and Pharmacology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2015-08-14
    Description: Sea surface partial pressure of CO2 (pCO2) was measured continuously in a transect of the North Atlantic subtropical gyre between Santo Domingo, Dominican Republic (18.1° N, 68.5° W) and Vigo, Spain (41.9° N, 11.8° W) during spring 2011. Additional biogeochemical and physical variables measured to identify factors controlling the surface pCO2 were analyzed in discrete samples collected at 16 sites along the transect at the surface and to a depth of 200 m. Sea surface pCO2 varied between 309 and 662 μatm, and showed differences between the western and eastern subtropical gyre. The subtropical gyre acted as a net CO2 sink, with a mean flux of −5.5 ± 2.2 mmol m−2 day−1. The eastern part of the transect, close to the North Atlantic Iberian upwelling off the Galician coast, was a CO2 source with an average flux of 33.5 ± 9.0 mmol m−2 day−1. Our results highlight the importance of making more surface pCO2 observations in the area located east of the Azores Islands since air-sea CO2 fluxes there are poorly studied.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2015-08-15
    Description: Although globotetraosylceramide (Gb4) is only recognized by a single member of the verotoxin family namely, the pig edema disease toxin (VT2e), removal of the acetyl group from the terminal N-acetyl hexosamine of Gb4 to generate the free amino sugar containing species (aminoGb4) results in the generation of a glycolipid preferentially recognized by all members of the verotoxin family (i.e., VT1, VT2, VT2c, and VT2e). GT3, a site-specific mutant of VT2e, in which Gb4 recognition is lost but Gb3 binding is retained, also binds aminoGb4. We have now compared the binding of VT1, VT2, VT2e, and GT3 to a series of aminoGb4 derivatives using a TLC overlay technique. DimethylaminoGb4 is bound by VT1 and VT2 but not VT2e or GT3; formylaminoGb4 binds all toxins but poorly to VT2 and preferentially VT2e; trifluoroacetylaminoGb4 binds only VT2e and GT3; isopropylaminoGb4 binds VT1 and poorly to VT2; benzylaminoGb4 binds all four toxins. Thus, there is a marked distinction between the permissible amino substitutions for VT1 and VT2e binding. GT3 is a hybrid between these in that, according to the substitution, it behaves similarly either to VT1 or to VT2e. For each species, GT3 does not however, show a hybrid binding between that of VT1 and VT2e. Analysis of the binding as a function of pH shows opposite effects for VT1 and VT2e: decreased pH increases VT1, but decreases VT2e receptor glycolipid binding.
    Electronic ISSN: 2227-9075
    Topics: Chemistry and Pharmacology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2015-09-12
    Description: It is well known that the Low-Voltage DC (LVDC) distribution system is a promising topology as a future smart distribution system due to its high efficiency and reliability. However, there are still some challenges in the construction and implementation of an LVDC system. For practical application of the LVDC system, therefore, it is necessary to perform any simulation in advance by considering various conditions that can occur in an LVDC system. In order to provide a foundation for analyzing a DC system, this paper presents an LVDC distribution system model including essential components such as power electronic devices, Distributed Energy Resource (DER), and Energy Storage System (ESS), which can be considered for implementation in an LVDC system using Electro-Magnetic Transient Program (EMTP) software. Moreover, an analysis of the characteristic in both the steady state and the transient state is conducted in an LVDC distribution system.
    Electronic ISSN: 2079-9276
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2015-09-15
    Description: Jordan is characterized as a “water scarce” country. Therefore, conserving ecosystem services such as water regulation and soil retention is challenging. In Jordan, rainwater harvesting has been adapted to meet those challenges. However, the spatial composition and configuration features of a target landscape are rarely considered when selecting a rainwater-harvesting site. This study aimed to introduce landscape spatial features into the schemes for selecting a proper water-harvesting site. Landscape metrics analysis was used to quantify 10 metrics for three potential landscapes (i.e., Watershed 104 (WS 104), Watershed 59 (WS 59), and Watershed 108 (WS 108)) located in the Jordanian Badia region. Results of the metrics analysis showed that the three non–vegetative land cover types in the three landscapes were highly suitable for serving as rainwater harvesting sites. Furthermore, Analytic Hierarchy Process (AHP) was used to prioritize the fitness of the three target sites by comparing their landscape metrics. Results of AHP indicate that the non-vegetative land cover in the WS 104 landscape was the most suitable site for rainwater harvesting intervention, based on its dominance, connectivity, shape, and low degree of fragmentation. Our study advances the water harvesting network design by considering its landscape spatial pattern.
    Electronic ISSN: 2076-3298
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2015-09-15
    Description: Since the 90s, several studies were conducted to evaluate the predictability of the Sahelian rainy season and propose seasonal rainfall forecasts to help stakeholders to take the adequate decisions to adapt with the predicted situation. Unfortunately, two decades later, the forecasting skills remains low and forecasts have a limited value for decision making while the population is still suffering from rainfall interannual variability: this shows the limit of commonly used predictors and forecast approaches for this region. Thus, this paper developed and tested new predictors and new approaches to predict the upcoming seasonal rainfall amount over the Sirba watershed. Predictors selected through a linear correlation analysis were further processed using combined linear methods to identify those having high predictive power. Seasonal rainfall was forecasted using a set of linear and non-linear models. An average lag time up to eight months was obtained for all models. It is found that the combined linear methods performed better than non-linear, possibly because non-linear models require larger and better datasets for calibration. The R2, Nash and Hit rate score are respectively 0.53, 0.52, and 68% for the combined linear approach; and 0.46, 0.45, 61% for non-linear principal component analysis.
    Electronic ISSN: 2225-1154
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2015-09-16
    Description: The relationship between lateral erosion of salt marshes and wind waves is studied in Hog Island Bay, Virginia USA, with high-resolution field measurements and aerial photographs. Marsh retreat is compared to wave climate calculated in the bay using the spectral wave-model Simulating Waves Nearshore (SWAN). We confirm the existence of a linear relationship between long-term salt marsh erosion and wave energy, and show that wave power can serve as a good proxy for average salt-marsh erosion rates. At each site, erosion rates are consistent across several temporal scales, ranging from months to decades, and are strongly related to wave power. On the contrary, erosion rates vary in space and weakly depend on the spatial distribution of wave energy. We ascribe this variability to spatial variations in geotechnical, biological, and morphological marsh attributes. Our detailed field measurements indicate that at a small spatial scale (tens of meters), a positive feedback between salt marsh geometry and wave action causes erosion rates to increase with boundary sinuosity. However, at the scale of the entire marsh boundary (hundreds of meters), this relationship is reversed: those sites that are more rapidly eroding have a marsh boundary which is significantly smoother than the marsh boundary of sheltered and slowly eroding marshes.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2015-09-23
    Description: A flexible mesh hydrodynamic model was developed to simulate flooding of the LaHave River watershed in Nova Scotia, Canada, from the combined effects of fluvial discharge and ocean tide and surge conditions. The analysis incorporated high-resolution lidar elevation data, bathymetric river and coastal chart data, and river cross-section information. These data were merged to generate a seamless digital elevation model which was used, along with river discharge and tidal elevation data, to run a two-dimensional hydrodynamic model to produce flood risk predictions for the watershed. Fine resolution topography data were integrated seamlessly with coarse resolution bathymetry using a series of GIS tools. Model simulations were carried out using DHI Mike 21 Flexible Mesh under a variety of combinations of discharge events and storm surge levels. Discharge events were simulated for events that represent a typical annual maximum runoff and extreme events, while tide and storm surge events were simulated by using the predicted tidal time series and adding 2 and 3 m storm surge events to the ocean level seaward of the mouth of the river. Model output was examined and the maximum water level for the duration of each simulation was extracted and merged into one file that was used in a GIS to map the maximum flood extent and water depth. Upstream areas were most vulnerable to fluvial discharge events, the lower estuary was most vulnerable to the effect of storm surge and sea-level rise, and the Town of Bridgewater was influenced by the combined effects of discharge and storm surge. To facilitate the use of the results for planning officials, GIS flood risk layers were intersected with critical infrastructure, identifying the roads, buildings, and municipal sewage infrastructure at risk under each flood scenario. Roads were converted to points at 10 m spacing for inundated areas and appended with the flood depth calculated from the maximum water level subtracted from the lidar digital elevation model.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2015-09-23
    Description: Wind-wave contributions to tropical cyclone (TC)-induced extreme sea levels are known to be significant in areas with narrow littoral zones, particularly at oceanic islands. Despite this, little information exists in many of these locations to assess the likelihood of inundation, the relative contribution of wind and wave setup to this inundation, and how it may change with sea level rise (SLR), particularly at scales relevant to coastal infrastructure. In this study, we explore TC-induced extreme sea levels at spatial scales on the order of tens of meters at Apia, the capitol of Samoa, a nation in the tropical South Pacific with typical high-island fringing reef morphology. Ensembles of stochastically generated TCs (based on historical information) are combined with numerical simulations of wind waves, storm-surge, and wave setup to develop high-resolution statistical information on extreme sea levels and local contributions of wind setup and wave setup. The results indicate that storm track and local morphological details lead to local differences in extreme sea levels on the order of 1 m at spatial scales of less than 1 km. Wave setup is the overall largest contributor at most locations; however, wind setup may exceed wave setup in some sheltered bays. When an arbitrary SLR scenario (+1 m) is introduced, overall extreme sea levels are found to modestly decrease relative to SLR, but wave energy near the shoreline greatly increases, consistent with a number of other recent studies. These differences have implications for coastal adaptation strategies.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2015-09-23
    Description: A Bayesian approach to sediment transport modeling can provide a strong basis for evaluating and propagating model uncertainty, which can be useful in transport applications. Previous work in developing and applying Bayesian sediment transport models used a single grain size fraction or characterized the transport of mixed-size sediment with a single characteristic grain size. Although this approach is common in sediment transport modeling, it precludes the possibility of capturing processes that cause mixed-size sediments to sort and, thereby, alter the grain size available for transport and the transport rates themselves. This paper extends development of a Bayesian transport model from one to k fractional dimensions. The model uses an existing transport function as its deterministic core and is applied to the dataset used to originally develop the function. The Bayesian multi-fraction model is able to infer the posterior distributions for essential model parameters and replicates predictive distributions of both bulk and fractional transport. Further, the inferred posterior distributions are used to evaluate parametric and other sources of variability in relations representing mixed-size interactions in the original model. Successful OPEN ACCESS J. Mar. Sci. Eng. 2015, 3 1067 development of the model demonstrates that Bayesian methods can be used to provide a robust and rigorous basis for quantifying uncertainty in mixed-size sediment transport. Such a method has heretofore been unavailable and allows for the propagation of uncertainty in sediment transport applications.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2015-09-23
    Description: Fulvic (FAs) and humic acids (HAs) are chemically fascinating. In water, they have a strong propensity to aggregate, but this research reveals that tendency is regulated by ionic strength. In the environment, conductivity extremes occur naturally—freshwater to seawater—warranting consideration at low and high values. The flow field flow fractionation (flow FFF) of FAs and HAs is observed to be concentration dependent in low ionic strength solutions whereas the corresponding flow FFF fractograms in high ionic strength solutions are concentration independent. Dynamic light scattering (DLS) also reveals insight into the conductivity-dependent behavior of humic substances (HSs). Four particle size ranges for FAs and humic acid aggregates are examined: (1) 〈10 nm; (2) 10 nm–6 µm; (3) 6–100 µm; and (4) >100 µm. Representative components of the different size ranges are observed to dynamically coexist in solution. The character of the various aggregates observed—such as random-extended-coiled macromolecules, hydrogels, supramolecular, and micellar—as influenced by electrolytic conductivity, is discussed. The disaggregation/aggregation of HSs is proposed to be a dynamic equilibrium process for which the rate of aggregate formation is controlled by the electrolytic conductivity of the solution.
    Electronic ISSN: 2227-9075
    Topics: Chemistry and Pharmacology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2015-09-26
    Description: Global climate change is projected to adversely impact freshwater resources, and in many settings these impacts are already apparent. In Nigeria, these impacts can be especially severe because of limited adaptive capacity. Understanding the knowledge and attitudes of current and future Nigerian decision-makers is important to preparing Nigeria for climate change impacts. This paper examines the knowledge and attitudes of university students and government officials about the causes, effects, and priority given to climate change in Nigeria. Paper surveys were distributed to 379 study participants in Akwa Ibom and Lagos states of Nigeria. The findings reveal that approximately 90% of study participants believe that human activities are a significant cause of climate change, with no significant difference between ministry officials’ and students’ responses. Participants were less knowledgeable about the effects of climate change on Nigeria as a whole, but more aware of impacts relevant to Southern Nigeria, where study sites were located. Personal experience seemed to play a role in the knowledge and attitudes of respondents. Due to the varied climate of the country, campaigns to ensure comprehensive knowledge of climate change impacts to the entire country may be helpful.
    Electronic ISSN: 2076-3298
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2015-09-30
    Description: Determining the optimum angle for a solar panel is important if tracking systems are not used and a tilt angle remains constant. This article determines the sensitivity of the optimum angle to surface reflectivity at different latitudes using a mathematical model that accounts for direct, diffuse and reflected radiation. A quadratic correlation is also developed to compute the optimal angle and maximum energy as a function of latitude and reflectivity. We also seek to determine how sensitive the optimal tilt angle is to cloud cover using the 35° latitude of the Prosperity solar facility in Albuquerque, NM.
    Electronic ISSN: 2079-9276
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2015-11-21
    Description: In sub-Saharan Africa, hydro-meteorological related disasters, such as floods, account for the majority of the total number of natural disasters. Over the past century, floods have affected 38 million people, claimed several lives and caused substantial economic losses in the region. The goal of this paper is to examine how personality disposition, social network, and socio-demographic factors mitigate the complex relationship between stressful life experiences of floods and ocean surges and the adoption of coping strategies among coastal communities in Nigeria and Tanzania. Generalized linear models (GLM) were fitted to cross-sectional survey data on 1003 and 1253 individuals in three contiguous coastal areas in Nigeria and Tanzania, respectively. Marked differences in the type of coping strategies were observed across the two countries. In Tanzania, the zero-order relationships between adoption of coping strategies and age, employment and income disappeared at the multivariate level. Only experience of floods in the past year and social network resources were significant predictors of participants’ adoption of coping strategies, unlike in Nigeria, where a plethora of factors such as experience of ocean surges in the past one year, personality disposition, age, education, experience of flood in the past one year, ethnicity, income, housing quality and employment status were still statistically significant at the multivariate level. Our findings suggest that influence of previous experience on adoption of coping strategies is spatially ubiquitous. Consequently, context-specific policies aimed at encouraging the adoption of flood-related coping strategies in vulnerable locations should be designed based on local needs and orientation.
    Electronic ISSN: 2076-3298
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2015-11-21
    Description: Climate change impacts on nature and the environment have been widely discussed and studied. Traditionally, a company’s continuity management is based on risk analysis. There are also attempts to implement scenario-based methods in the risk management procedures of companies. For industrial decision makers, it is vital to acknowledge the impacts of climate change with regards to their adaptation strategies. However, a scenario-based approach is not always the most effective way to analyze these risks. This paper investigates the integration of scenario and risk-based methods for a company’s adaptation planning. It considers the uncertainties of the climate change scenarios and the recognized risks as well as suitable adaptation strategies. The paper presents the results of climate risk analysis prepared for two Finnish hydropower plants. The introduced method was first piloted in 2008 and then again in 2015. The update of the analysis pointed out that at the company level, the climate risks and other risks originating from governmental or political decisions form an intertwined wholeness where the origin of the risk is difficult to outline. It seems that, from the business point of view, the main adaptation strategies suggested by the integrated risk and scenarios approach are those that support buying “safety margins” in new investments and reducing decision time horizons. Both of these adaptation strategies provide an advantage in the circumstances where also political decisions and societal changes have a great effect on decision making.
    Electronic ISSN: 2225-1154
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2015-11-26
    Description: Energy efficiency has been an important topic since the latter part of the last century. This is because adoption of energy efficiency measures has been acknowledged as one of the key methods of addressing the negative impact of climate change. In Zambia, however, the need to adopt energy efficiency measures has not just been driven by the imperative to mitigate the negative effects of climate change but also by a critical shortage of energy. This research looks at households’ energy consumption behavior in low- and high-income areas of Kitwe. Recent studies on the relationship between household energy consumption and behavioral lifestyle have been descriptive, with limited emphasis on the relationships between various variables. In this study, descriptive and inferential statistics have been used to investigate relationships between the two income groups and various energy consumption-related variables such as knowledge about energy reduction measures, energy saving strategies, barriers to the use of energy saving strategies, and the motives for using energy reduction strategies. Methodologically, the study was largely quantitative in nature, with questionnaires administered to a combined total of 56 households. However, key interviews were also conducted that helped us to get a clearer understanding of some of the issues covered in the research. Key findings are that whereas the descriptive statistics show that there are behavioral differences between the two income groups, the inferential statistics show that there is no relationship between income level and the energy efficiency variables. This has been found to be consistent with results from studies done elsewhere. The key lesson is that there is low usage of energy efficiency measures in both low- and high-income areas and that the authorities need to change the way information is disseminated to consumers from the current method of advertising to social diffusion.
    Electronic ISSN: 2079-9276
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2015-11-26
    Description: Magnetic nanoparticles (MNPs) exhibit unique magnetic properties making them ideally suited for a variety of biomedical applications. Depending on the desired magnetic effect, MNPs must meet special magnetic requirements which are mainly determined by their structural properties (e.g., size distribution). The hyphenation of chromatographic separation techniques with complementary detectors is capable of providing multidimensional information of submicron particles. Although various methods have already been combined for this approach, so far, no detector for the online magnetic analysis was used. Magnetic particle spectroscopy (MPS) has been proven a straightforward technique for specific quantification and characterization of MNPs. It combines high sensitivity with high temporal resolution; both of these are prerequisites for a successful hyphenation with chromatographic separation. We demonstrate the capability of MPS to specifically detect and characterize MNPs under usually applied asymmetric flow field-flow fractionation (A4F) conditions (flow rates, MNP concentration, different MNP types). To this end MPS has been successfully integrated into an A4F multidetector platform including dynamic ligth scattering (DLS), multi-angle light scattering (MALS) and ultraviolet (UV) detection. Our system allows for rapid and comprehensive characterization of typical MNP samples for the systematic investigation of structure-dependent magnetic properties. This has been demonstrated by magnetic analysis of the commercial magnetic resonance imaging (MRI) contrast agent Ferucarbotran (FER) during hydrodynamic A4F fractionation.
    Electronic ISSN: 2227-9075
    Topics: Chemistry and Pharmacology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2015-05-30
    Description: A detailed statistical analysis was performed at the Neuquén river basin using precipitation data for 1980–2007. The hydrological year begins in March with a maximum in June associated with rainfall and another relative maximum in October derived from snow-break. General features of the rainy season and the excess or deficits thereof are analyzed using standardized precipitation index (SPI) for a six-month period in the basin. The SPI has a significant cycle of 14.3 years; the most severe excess (SPI greater than 2) has a return period of 25 years, while the most severe droughts (SPI less than −2) have a return period of 10 years. The SPI corresponding to the rainy season (April–September) (SPI9) has no significant trend and is used to classify wet/dry years. In order to establish the previous circulation patterns associated with interannual SPI9 variability, the composite fields of wet and dry years are compared. There is a tendency for wet (dry) periods to take place during El Niño (La Niña) years, when there are positive anomalies of precipitable water over the basin, when the zonal flow over the Pacific Ocean is weakened (intensified) and/or when there are negative pressure anomalies in the southern part of the country and Antarctic sea. Some prediction schemes using multiple linear regressions were performed. One of the models derived using the forward stepwise method explained 42% of the SPI9 variance and retained two predictors related to circulation over the Pacific Ocean: one of them shows the relevance of the intensity of zonal flow in mid-latitudes, and the other is because of the influence of low pressure near the Neuquén River basin. The cross-validation used to prove model efficiency showed a correlation of 0.41 between observed and estimated SPI9; there was a probability of detection of wet (dry) years of 80% (65%) and a false alarm relation of 25% in both cases.
    Electronic ISSN: 2225-1154
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2015-05-30
    Description: The Abdus Salam International Center for Theoretical Physics (ICTP) version 4.4 Regional Climate Model (RegCM4) is used to investigate the rainfall response to cooler/warmer sea surface temperature anomaly (SSTA) forcing in the Indian and Atlantic Oceans. The effect of SSTA forcing in a specific ocean basin is identified by ensemble, averaging 10 individual simulations in which a constant or linearly zonally varying SSTA is prescribed in individual basins while specifying the 1971–2000 monthly varying climatological sea surface temperature (SST) across the remaining model domain. The nonlinear rainfall response to SSTA amplitude also is investigated by separately specifying +1K, +2K, and +4K SSTA forcing in the Atlantic and Indian Oceans. The simulation results show that warm SSTs over the entire Indian Ocean produce drier conditions across the larger Blue Nile catchment, whereas warming ≥ +2K generates large positive rainfall anomalies exceeding 10 mm·day−1 over drought prone regions of Northeastern Ethiopia. However, the June–September rainy season tends to be wetter (drier) when the SST warming (cooling) is limited to either the Northern or Southern Indian Ocean. Wet rainy seasons generally are characterized by deepening of the monsoon trough, east of 40°E, intensification of the Mascarene high, strengthening of the Somali low level jet and the tropical easterly jet, enhanced zonal and meridional vertically integrated moisture fluxes, and steeply vertically decreasing moist static energy. The opposite conditions hold for dry monsoon seasons.
    Electronic ISSN: 2225-1154
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2015-06-02
    Description: Coral bleaching is caused by environmental stress and susceptibility to bleaching stress varies among types of coral. The physiological properties of the algal symbionts (Symbiodinium spp.), especially extent of damage to PSII and its repair capacity, contribute importantly to this variability in stress susceptibility. The objective of the present study was to investigate the relationship between the growth rates and photosynthetic activities of six cultured strains of Symbiodinium spp. (clades A, B, C, D, and F) at elevated temperature (33 °C). We also observed the recovery of photodamaged-PSII in the presence or absence of a chloroplast protein synthesis inhibitor (lincomycin). The growth rates and photochemical efficiencies of PSII (Fv/Fm) decreased in parallel at high temperature in thermally sensitive strains, B-K100 (clade B followed by culture name) and A-Y106, but not in a thermally tolerant strain, F-K102 and D-K111. In strains A-KB8 and C-Y103, growth declined markedly at high temperature, but Fv/Fm decreased only slightly. These strains may reallocate energy from growth to the repair of damaged photosynthetic machineries or protection pathways. Alternatively, since recoveries of photo-damaged PSII at 33 °C were modest in strains A-KB8 and C-Y103, thermal stressing of other metabolic pathways may have reduced growth rates in these two strains. This possibility should be explored in future research efforts.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2015-05-30
    Description: Storm surge is dependent on wind direction, with maximum surge heights occurring when strong winds blow onshore. It is less obvious what happens when a port city is situated at the end of a long narrow gulf, like Venice at the northwestern end of the Adriatic Sea. Does the narrow marine approach to the port city limit the dangerous wind direction to a span of only a few degrees? This modeling study shows that the response in surge height to wind direction is a sinusoidal curve for port cities at the end of a long inlet, as well as for cities exposed along a straight coastline. Surge height depends on the cosine of the angle between the wind direction and the major axis of the narrow gulf. There is no special protection from storm surge afforded by a narrow ocean-going approach to a port city.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2015-06-02
    Description: A new dynamical downscaling methodology to analyze the impact of global climate change on the local climate of cities worldwide is presented. The urban boundary layer climate model UrbClim is coupled to 11 global climate models contained in the Coupled Model Intercomparison Project 5 archive, conducting 20-year simulations for present (1986–2005) and future (2081–2100) climate conditions, considering the Representative Concentration Pathway 8.5 climate scenario. The evolution of the urban heat island of eight different cities, located on three continents, is quantified and assessed, with an unprecedented horizontal resolution of a few hundred meters. For all cities, urban and rural air temperatures are found to increase strongly, up to 7 °C. However, the urban heat island intensity in most cases increases only slightly, often even below the range of uncertainty. A potential explanation, focusing on the role of increased incoming longwave radiation, is put forth. Finally, an alternative method for generating urban climate projections is proposed, combining the ensemble temperature change statistics and the results of the present-day urban climate.
    Electronic ISSN: 2225-1154
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2015-05-23
    Description: Numerous anthropogenic factors represent environmental threats to Gulf Coast wetland ecosystems and associated fauna. American alligators (Alligator mississippiensis) have been subject to long-term management and used as ecological and physiological indicators of habitat quality in response to anthropogenic events and stochastic natural disasters. The present study monitored heterophil to lymphocyte ratios (an indicator of stress), in American alligators in a Louisiana intermediate marsh from 2009 to 2011, a time period that coincides with an oil inundation event that occurred in 2011. Sixteen alligators were observed and processed morphometrically (total length, snout-vent length and body mass). Heterophil to lymphocyte ratios were negatively correlated with size, suggesting larger American alligators were physiologically more resilient to the disturbance, more able to actively avoid these poor conditions, or are less affected by localized disturbance.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2015-05-26
    Description: Kratom is a tree planted in Southeast Asia, including Thailand, Malaysia, Myanmar (Burma) and elsewhere in the region. A long history of usage and abuse of kratom has led to the classification of kratom as a controlled substance in its native Thailand and other Southeast Asian countries. However, kratom is not controlled in the United States, and the wide availability of kratom on the Internet and in the streets has led to its emergence as an herbal drug of misuse. With the increasing popularity of kratom, efficient protocols are needed to detect kratom use. In this study, a rapid method for the analysis of kratom compounds, mitragynine and 7-hydroxymitragynine, in human urine has been developed and validated using high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). The chromatographic system employed a 2.6-μm 100 mm × 2.1 mm phenyl-hexyl analytical column and gradient elution with a 0.4-mL/min flow rate of water and acetonitrile as mobile phases. A triple quadrupole mass spectrometer was used as the detector for data acquisition. The analyst was the quantification software. The established method demonstrated linearity of >0.99 for both analytes, and low detection limits were obtained down to 0.002581 ng/mL for mitragynine and 0.06910 ng/mL for 7-hydroxymitragynine. The validated method has been utilized for clinical analysis of urine for the purpose of mitragynine and 7-hydroxymitragynine detection.
    Electronic ISSN: 2227-9075
    Topics: Chemistry and Pharmacology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2015-05-29
    Description: This numerical study focuses on the fire phenomenology associated with the presence of a composite-type aircraft immersed, at one particular location and orientation, within a large aviation-fuel fire in a moving fluid medium. An extension of the eddy dissipation concept is incorporated, allowing one to investigate the roles of the wind speed and its direction on the fire growth, heat flux distribution and smoke products, such as carbon monoxide and soot. The predicted flame shape compares well with the measurements for an intermediate-scale fire. The outcome of the study is interesting, and the interaction model between turbulence and combustion is indeed adequate. The prediction indicates that interaction between the large object and fire environment combined with the influence of wind conditions dramatically affects the continuous flame shape. The increase of the wind speed results in an alteration of the distribution of the incident heat fluxes to the engulfed fuselage skin for a case where the fire and fuselage are of comparable size. The highest heat flux occurs on the windward side of the fuselage for the low and medium winds, but on the leeward side of the fuselage for the high wind. The peak in heat flux to the medium or high wind is almost equal in magnitude, but about a factor four increase of that to the low wind.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2016-07-12
    Description: The manta is the largest marine organism to swim by dorsoventral oscillation (flapping) of the pectoral fins. The manta has been considered to swim with a high efficiency stroke, but this assertion has not been previously examined. The oscillatory swimming strokes of the manta were examined by detailing the kinematics of the pectoral fin movements swimming over a range of speeds and by analyzing simulations based on computational fluid dynamic potential flow and viscous models. These analyses showed that the fin movements are asymmetrical up- and downstrokes with both spanwise and chordwise waves interposed into the flapping motions. These motions produce complex three-dimensional flow patterns. The net thrust for propulsion was produced from the distal half of the fins. The vortex flow pattern and high propulsive efficiency of 89% were associated with Strouhal numbers within the optimal range (0.2–0.4) for rays swimming at routine and high speeds. Analysis of the swimming pattern of the manta provided a baseline for creation of a bio-inspired underwater vehicle, MantaBot.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2016-07-23
    Description: A recent alleged “drone” collision with a British Airways Airbus A320 at Heathrow Airport highlighted the need to understand civil Remotely Piloted Aircraft Systems (RPAS) accidents and incidents (events). This understanding will facilitate improvements in safety by ensuring efforts are focused to reduce the greatest risks. One hundred and fifty two RPAS events were analyzed. The data was collected from a 10-year period (2006 to 2015). Results show that, in contrast to commercial air transportation (CAT), RPAS events have a significantly different distribution when categorized by occurrence type, phase of flight, and safety issue. Specifically, it was found that RPAS operations are more likely to experience (1) loss of control in-flight, (2) events during takeoff and in cruise, and (3) equipment problems. It was shown that technology issues, not human factors, are the key contributor in RPAS events. This is a significant finding, as it is contrary to the industry view which has held for the past quarter of a century that human factors are the key contributor (which is still the case for CAT). Regulators should therefore look at technologies and not focus solely on operators.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2016-07-27
    Description: Forests are a vital resource supporting the livelihoods of rural communities in Kenya. In spite of this significant role, human activities have put increased pressure on this resource, leading to continued forest-cover decline. To address forest-cover decline, the Kenyan government introduced Participatory Forest Management (PFM) through its Forest Department in the early 2000s, enabling local communities to form and register Community Forest Associations (CFAs). This study was conducted to examine the impacts of the PFM approach on the Lembus Forest-cover change. Three Landsat satellite images (Landsat 5 TM acquired on 9 January 1985; Landsat 7 ETM+ acquired on 1 February 2002; and Landsat 8 OLI (Operational Land Imager) acquired on 1 March 2015) were used to analyse forest-cover change in the 1st period (1985–2002) and the 2nd period (2002–2015). In analysing the contribution of CFAs in conservation and management of the Lembus Forest, questionnaire sheets were distributed randomly to various residents living adjacent to the Lembus Forest; 327 valid responses were obtained from heads of households. The results of the land-cover change show a decrease in the percentage of forest-cover decline from 11.2%, registered in the 1st period, to 8.2% in the 2nd period. This led to the decrease of the annual rate of the forest-cover decline from 0.4 in the 1st period to 0.2 in the 2nd period. Three CFAs operate in this area, and 75% of the respondents participated in tree planting and 16% participated in tree pruning. This type of community participation is thought to most likely be the cause of the decline of the recent decreasing annual rate of forest-cover loss in the study area. Conversely, we found out that important initiatives, such as a forest patrol, had not been implemented due to lack of funding, and that CFAs and Kenya Forest Service had not yet signed any management agreement.
    Electronic ISSN: 2076-3298
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2016-07-31
    Description: Large estuaries are especially vulnerable to coastal flooding due to the potential of combined storm surges and riverine flows. Numerical models can support flood prevention and planning for coastal communities. However, while recent advancements in the development of numerical models for storm surge prediction have led to robust and accurate models; an increasing number of parameters and physical processes’ representations are available to modelers and engineers. This study investigates uncertainties associated with the selection of physical parameters or processes involved in storm surge modeling in large estuaries. Specifically, we explored the sensitivity of a hydrodynamic model (ADCIRC) and a coupled wind-wave and circulation model system (ADCIRC + SWAN) to Manning’s n coefficient, wind waves and circulation interaction (wave setup), minimum depth (H0) in the wetting and drying algorithm, and spatially constant horizontal eddy viscosity (ESLM) forced by tides and hurricane winds. Furthermore, sensitivity analysis to Manning’s n coefficient and the interaction of waves and circulation were analyzed by using three different numerical meshes. Manning’s coefficient analysis was divided into waterway (rivers, bay and shore, and open ocean) and overland. Overall, the rivers exhibited a larger sensitivity, and M2 amplitude and maximum water elevations were reduced by 0.20 m and 0.56 m, respectively, by using a high friction value; similarly, high friction reduced maximum water levels up to 0.30 m in overland areas; the wave setup depended on the offshore wave height, angle of breaking, the profile morphology, and the mesh resolution, accounting for up to 0.19 m setup inside the bay; minimum depth analysis showed that H0 = 0.01 added an artificial mass of water in marshes and channels, meanwhile H = 0.1 partially solved this problem; and the eddy viscosity study demonstrated that the ESLM = 40 values reduced up to 0.40 m the peak of the maximum water levels in the upper side of narrow rivers.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2016-08-06
    Description: Extreme rainfall events are meteorological hazards that cause great damage and many casualties in the world. This paper examines the trends in extreme rainfall from 10 sub-daily time series and 44 daily time series in Côte d’Ivoire. Rainfall data were converted into indices. In total, six (6) indices were used for daily extreme rainfall and one (1) index for sub-daily extreme rainfall (15 to 240 min). Two statistical tests for trend detection were used to evaluate the possible trend in these precipitation data. The first is a Mann-Kendall non-parametric trend test, used to evaluate the existence of monotonic trends. The second is a linear regression method, based on a parametric approach to trend detection. Results show that very few statistically significant decreasing trends can be detected at the sub-daily and daily timescales. Some decreasing trends in extreme rainfall events were localized in the south and southeast. These results could enhance the implementation of adaptation systems to flood risk.
    Electronic ISSN: 2225-1154
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2016-07-13
    Description: Previous field research on the Horqin Sandy Land (China), which has suffered from severe desertification during recent decades, revealed how land use on a sand-dune topography affects both land degradation and restoration. This study aimed to depict the spatial distribution of local land use in order to shed more light on previous field findings regarding policies on a broader scale. We performed the following analyses with Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) and Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2) images of Advanced Land Observing Satellite (ALOS): (1) object-based classification to discriminate preliminary classification of land-use types that were approximately differentiated by ordinary pixel-based analysis with spectral information; (2) digital photogrammetry to generate a digital surface model (DSM) with adequately high accuracy to represent undulating sand-dune topography; (3) geographic information system (GIS) analysis to classify major topographic types with the digital surface model (DSM); and (4) overlay of the two classification results to depict the local land-use types. The overall accuracies of the object-based and GIS-based classifications were high, at 93% (kappa statistic: 0.84) and 89% (kappa statistic: 0.81), respectively. The resultant local land-use map represents areas covered in previous field studies, showing where and how land degradation and restoration are likely to occur. This research can contribute to future environmental surveys, models, and policies in the study area.
    Electronic ISSN: 2076-3298
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2016-07-18
    Description: Islands present sustainable energy growth challenges due to a number of reasons such as remoteness, limited energy resources, vulnerability to external events and strong dependence on international trade agreements. In particular, the Dodecanese Islands of the Aegean Sea cover their electricity needs mostly on the basis of autonomous conventional stations, consuming significant quantities of imported oil annually. Renewable energy sources (RES) penetration increase addresses the global requirements towards a carbon neutral environment, and wind farms (WFs) are among the most well-known green electricity-production alternatives. The study explores wind power installation potential of the Dodecanese Islands and the storage or interconnection options, based on the national and European legislative framework and the international scientific literature. The major finding is that, due to the high wind potential of the area, the National policy and targets focus on the installation of great RES power at Greek islands. Hence, private interests, who are willing to carry out the electrical interconnection of islands to the mainland, serve the same objective. Both scientific and business proposals overcome the local wind power installation capacity and neglect local specifics and needs.
    Electronic ISSN: 2076-3298
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2016-07-19
    Description: Carbon neutrality represents one climate strategy adopted by many cities, including the city of Helsinki and the Helsinki metropolitan area in Finland. This study examines initiatives adopted by the Helsinki metropolitan area aimed at reducing energy-related carbon emissions and achieving carbon neutrality through future actions. Various sectorial energy consumption rates per year and carbon emissions from various sectors within the city of Helsinki and the metropolitan area were extracted from an online database and re-calculated (in GWh, MWh/inhabitant and MtCO2e, KtCO2e/inhabitant). We employed a backcasting scenario method to explore the various carbon reduction measures in the Helsinki metropolitan area. About 96% of the emissions produced in the Helsinki metropolitan area are energy-based. District heating represents the primary source of emissions, followed by transportation and electricity consumption, respectively. We also found that accomplishing the carbon reduction strategies of the Helsinki metropolitan area by 2050 remains challenging. Technological advancement for clean and renewable energy sources, smart policies and raising awareness resulting in behavioral changes greatly affect carbon reduction actions. Thus, strong political commitments are also required to formulate and implement stringent climate actions.
    Electronic ISSN: 2225-1154
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2016-07-21
    Description: This review of the study “Road to Dawei”, conducted by WWF Greater Mekong, seeks to assess economic, social and environmental impacts of road construction between Kanchanaburi, Thailand and Dawei, Myanmar. It also aims to identify relevant Green Economy policy interventions that would enhance the sustainable use and conservation of natural capital, which is considered to be a foundation for sustainable and inclusive economic development. In particular, the study concentrates on the identification of feedback loops, delays and nonlinearity in order to properly map the socio-economic and environmental system analysed and inform decision making. Results are presented for three different scenarios both for Myanmar and for Thailand. Simulation results show that a conventional approach to road construction is likely to have positive economic impacts in the region, especially in the short term, but also negative consequences for the integrity of the ecosystem, which in turn might also negatively impact on the investment itself and its economic outcomes in the medium and longer term. Further, results indicate that green economy interventions would mitigate environmental risks by creating synergies across sectors, systemically.
    Electronic ISSN: 2076-3298
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2016-07-27
    Description: An analysis of the kinematics of a flapping membrane wing using experimental kinematic data is presented. This motion capture technique tracks the positon of the retroreflective marker(s) placed on the left wing of a 1.3-m-wingspan ornithopter. The time-varying three-dimensional data of the wing kinematics were recorded for a single frequency. The wing shape data was then plotted on a two-dimensional plane to understand the wing dynamic behaviour of an ornithopter. Specifically, the wing tip path, leading edge bending, wing membrane shape, local twist, stroke angle and wing velocity were analyzed. As the three characteristic angles can be expressed in the Fourier series as a function of time, the kinematics of the wing can be computationally generated for the aerodynamic study of flapping flight through the Fourier coefficients presented. Analysis of the ornithopter wing showed how the ornithopter closely mimics the flight motions of birds despite several physical limitations.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2016-08-02
    Description: Anthropogenic noise emission in the marine environment is a key issue nowadays and has drawn the attention of regulatory bodies in various nations. In particular, the noise generated during the installation of foundation piles for the offshore wind industry is considered to be harmful for aquatic species. A reliable prediction of the underwater noise during the installation of a foundation pile is thus essential for the proper assessment of the ecological impact. In this paper, the structure-borne wave radiation is investigated with the help of a semi-analytical model for two cases. The first case considers a pile that is installed with the help of an impact hammer, whereas the second one deals with a pile that is driven into the seabed with the help of a vibratory device. The spatial distribution and the frequency content of the radiated sound are analyzed, and the differences are highlighted between the two cases. The model is validated with data available in the literature that were collected during several measurement campaigns. Subsequently, the predicted noise levels are converted into an equivalent index that reflects the auditory damage to certain marine species, and a method is presented for the derivation of zones of impact around the pile that are based on the noise predictions by the models and the chosen method of installation. This approach can be used to define critical zones within which a predefined level of auditory damage is to be expected based on a specific installation scenario.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2016-06-25
    Description: Climate change will have large impacts on water resources and its predictions are fraught with uncertainties in West Africa. With the current global drive for renewable energy due to climate change, there is a need for understanding the effects of hydro-climatic changes on water resources and hydropower generation. A hydrological model was used to model runoff inflow into the largest hydroelectric dam (Kainji) in the Niger Basin (West Africa) under present and future conditions. Inflow to the reservoir was simulated using hydro-climatic data from a set of dynamically downscaled 8 global climate models (GCM) with two emission scenarios from the CORDEX-Africa regional downscaling experiment, driven with CMIP5 data. Observed records of the Kainji Lake were used to develop a hydroelectricity production model to simulate future energy production for the reservoir. Results indicate an increase in inflow into the reservoir and concurrent increases in hydropower production for the majority of the GCM data under the two scenarios. This analysis helps planning hydropower schemes for sustainable hydropower production.
    Electronic ISSN: 2225-1154
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2016-06-23
    Description: In recent years, biofuels have emerged as a suitable alternative to hydrocarbon fuel due to their foreseen potential of being a future energy resource. Biofuel development initiatives have been successfully implemented in countries like Brazil, United States of America, European Union, Canada, Australia, and Japan. However, such programmes have been stagnant in Africa due to various constraints, such as financial barriers, technical expertise, land availability, and government policies. Nonetheless, some countries within the continent have realized the potential of biofuels and have started to introduce similar programmes and initiatives for their development. These include the bioethanol production initiatives and the plantation of jatropha oil seeds in most Sub-Saharan African countries for biodiesel production. Therefore, this paper examines the biofuel development initiatives that have been implemented in several countries across Sub-Saharan Africa over the past few years. It also discusses the opportunities and challenges of having biofuel industries in the continent. Finally, it proposes some recommendations that could be applied to accelerate their development in these Sub-Saharan African countries.
    Electronic ISSN: 2225-1154
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2016-06-25
    Description: Colombia is undergoing a period of rapid development. In particular, the Magdalena-Cauca Rivers basin, and the Mojana region within it, is going to experience rapid expansion in infrastructure growth, entailing hydropower development, road and navigability works along hundreds of kilometers of channels, as well as standard flood control measures. This paper argues that unexpected and undesired outcomes are very likely to occur as a consequence of the hydraulic and geomorphological reaction of river systems to such development schemes; namely, we foresee heightened hydro-morphological risks, along with the loss of environmental services and strong increases in maintenance costs. River behavior has been the subject of extensive study by diverse disciplines. As a result, key principles of fluvial dynamics have been elucidated and specific quantitative prediction tools developed. In this paper we do rely on this wealth of knowledge. However, since specific local information and interpretative tools in Colombia are either lacking or unreliable, it is inevitable that, at the moment, any basin scale analysis has to remain qualitative and must incorporate several assumptions, leaving it open to questioning and further refinement. Nonetheless, we argue that advancing such type of speculative conjectures is the “right thing to do”. The undeniably desirable but hard to achieve alternative of waiting for sufficient datasets and tools would entail excessive delay in obtaining relevant answers while large-scale development would continue to occur with potentially damaging results. Therefore, our analysis is conceived along the precautionary principle. This paper is primarily aimed at technical advisors of policy makers as it offers scientifically-based arguments for informing the political debate, hopefully guiding decision makers towards better choices. Rather than advocating specific solutions, the focus is on pointing out the likely adverse consequences of the currently planned course of action.
    Electronic ISSN: 2079-9276
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2016-06-26
    Description: This study aimed to determine the potential of naturally occurring Cretan brake fern (Pteris cretica) as a biomarker and hyperaccumulator in an abandoned mine in Southwest Japan. This species is a known hyperaccumulator of As. Total concentrations of heavy metals and As were determined in the shoots and roots of plants collected from inside and outside of the mine area. The results indicate that As and Pb in the shoots of P. cretica reached 1290 and 3840 mg/kg dry weight, respectively, which is classified as hyperaccumulation. The metal uptake intensity in the shoots indicates that P. cretica is a biomarker for As, Pb, and Zn. Furthermore, the metal concentrations, and bioconcentration and translocation factors indicate that P. cretica is a good candidate for phytoremediation of sites that are contaminated with As and Pb.
    Electronic ISSN: 2076-3298
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2016-06-24
    Description: Technological advances have enabled the development of a number of optical fiber sensing methods over the last few years. The most prevalent optical technique involves the use of fiber Bragg grating (FBG) sensors. These small, lightweight sensors have many attributes that enable their use for a number of measurement applications. Although much literature is available regarding the use of FBGs for laboratory level testing, few publications in the public domain exist of their use at the operational level. Therefore, this paper gives an overview of the implementation of FBG sensors for large scale structures and applications. For demonstration, a case study is presented in which FBGs were used to determine the deflected wing shape and the out-of-plane loads of a 5.5-m carbon-composite wing of an ultralight aerial vehicle. The in-plane strains from the 780 FBG sensors were used to obtain the out-of-plane loads as well as the wing shape at various load levels. The calculated out-of-plane displacements and loads were within 4.2% of the measured data. This study demonstrates a practical method in which direct measurements are used to obtain critical parameters from the high distribution of FBG sensors. This procedure can be used to obtain information for structural health monitoring applications to quantify healthy vs. unhealthy structures.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2016-05-05
    Description: Morphological changes during a flood event in July 2010 were observed with X-band marine radar at the mouth of Tenryu River, Shizuoka, Japan. Radar images were collected hourly for more than 72 h from the beginning of the flood and processed into time-averaged images. Changes in the morphology of the area were interpreted from the time-averaged images, revealing that the isolated river dune was washed away by the flood, the width of the river mouth increased gradually, and the river mouth terrace expanded radially. Furthermore, image analysis of the radar images was applied to estimate the migration speed of the brightness pattern, which is assumed to be a proxy of bottom undulation of the river bed. The migration was observed to be faster when the water level gradient between the river channel and sea increased.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2016-05-27
    Description: Remodeling of rocky coasts and erosion rates have been widely studied in past years, but not all the involved processes acting over rocks surface have been quantitatively evaluated yet. The first goal of this paper is to revise the different methodologies employed in the quantification of the effect of biotic agents on rocks exposed to coastal morphologic agents, comparing their efficiency. Secondly, we focus on geological methods to assess and quantify bio-remodeling, presenting some case studies in an area of the Mediterranean Sea in which different geological methods, inspired from the revised literature, have been tested in order to provide a quantitative assessment of the effects some biological covers exert over rocky platforms in tidal and supra-tidal environments. In particular, different experimental designs based on Schmidt hammer test results have been applied in order to estimate rock hardness related to different orders of littoral platforms and the bio-erosive/bio-protective role of Chthamalus ssp. and Verrucariaadriatica. All data collected have been analyzed using statistical tests to evaluate the significance of the measures and methodologies. The effectiveness of this approach is analyzed, and its limits are highlighted. In order to overcome the latter, a strategy combining geological and experimental–computational approaches is proposed, potentially capable of revealing novel clues on bio-erosion dynamics. An experimental-computational proposal, to assess the indirect effects of the biofilm coverage of rocky shores, is presented in this paper, focusing on the shear forces exerted during hydration-dehydration cycles. The results of computational modeling can be compared to experimental evidence, from nanoscopic to macroscopic scales.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2016-05-27
    Description: The advent, during the first decade of the 21st century, of the concept of acoustic metamaterial has disclosed an incredible potential of development for breakthrough technologies. Unfortunately, the extension of the same concepts to aeroacoustics has turned out to be not a trivial task, because of the different structure of the governing equations, characterized by the presence of the background aerodynamic convection. Some of the approaches recently introduced to circumvent the problem are biased by a fundamental assumption that makes the actual realization of devices extremely unlikely: the metamaterial should guarantee an adapted background aerodynamic convection in order to modify suitably the acoustic field and obtain the desired effect, thus implying the porosity of the cloaking device. In the present paper, we propose an interpretation of the metamaterial design that removes this unlikely assumption, focusing on the identification of an aerodynamically-impermeable metamaterial capable of reproducing the surface impedance profile required to achieve the desired scattering abatement. The attention is focused on a moving obstacle impinged by an acoustic perturbation induced by a co-moving source. The problem is written in a frame of reference rigidly connected to the moving object to couple the convective wave equation in the hosting medium with the inertially-anisotropic wave operator within the cloak. The problem is recast in an integral form and numerically solved through a boundary-field element method. The matching of the local wave vector is used to derive a convective design of the metamaterial applicable to the specific problem analyzed. Preliminary numerical results obtained under the simplifying assumption of a uniform aerodynamic flow reveal a considerable enhancement of the masking capability of the convected design. The numerical method developed shows a remarkable computational efficiency, completing a simulation of the entire field in a few minutes on mid-end workstations. The results are re-interpreted in term of boundary impedance, assuming a locally-reacting behavior of the outer boundary of the cloaking layer. The formulation is currently being extended to the analysis of arbitrarily complex external flows in order to remove the limitation of the background uniform stream in the host.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2016-03-24
    Description: Global climate change has local implications. Focusing on datasets from the topographically-challenging Karnali river basin in Western Nepal, this research provides an overview of hydro-climatic parameters that have been observed during 1981–2012. The spatial and temporal variability of temperature and precipitation were analyzed in the basin considering the seven available climate stations and 20 precipitation stations distributed in the basin. The non-parametric Mann–Kendall test and Sen’s method were used to study the trends in climate data. Results show that the average precipitation in the basin is heterogeneous, and more of the stations trend are decreasing. The precipitation shows decreasing trend by 4.91 mm/year, i.e., around 10% on average. Though the increasing trends were observed in both minimum and maximum temperature, maximum temperature trend is higher than the minimum temperature and the maximum temperature trend during the pre-monsoon season is significantly higher (0.08 °C/year). River discharge and precipitation observations were analyzed to understand the rainfall-runoff relationship. The peak discharge (August) is found to be a month late than the peak precipitation (July) over the basin. Although the annual precipitation in most of the stations shows a decreasing trend, there is constant river discharge during the period 1981–2010.
    Electronic ISSN: 2225-1154
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2016-03-24
    Description: The aim of the presented study is to assess the impacts of climate change on hydropower production of the Toce Alpine river basin in Italy. For the meteorological forcing of future scenarios, time series were generated by applying a quantile-based error-correction approach to downscale simulations from two regional climate models to point scale. Beside a general temperature increase, climate models simulate an increase of mean annual precipitation distributed over spring, autumn and winter, and a significant decrease in summer. A model of the hydropower system was driven by discharge time series for future scenarios, simulated with a spatially distributed hydrological model, with the simulation goal of defining the reservoirs management rule that maximizes the economic value of the hydropower production. The assessment of hydropower production for future climate till 2050 respect to current climate (2001–2010) showed an increase of production in autumn, winter and spring, and a reduction in June and July. Significant change in the reservoir management policy is expected due to anticipation of the date when the maximum volume of stored water has to be reached and an increase of the reservoir drawdown during August and September to prepare storage capacity for autumn inflows.
    Electronic ISSN: 2225-1154
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2016-07-10
    Description: Acoustic methods used in fish abundance estimation constitute a key part of the analytic assessment that makes the basis for abundance estimation of marine resources. The methods rely on power-budget equations and calibrated systems. Different formulations of power-budget equations and calibration factors have been proposed for use in scientific echo sounder and sonar systems. There are unresolved questions and apparent inconsistencies in prior literature related to this field. A generic (instrument independent) and unifying theory is presented that attempts to explain the different power-budget and calibration factor formulations proposed and used in prior literature, and how these are mutually related. Deviations and apparent inconsistencies in this literature appear to be explained and corrected. This also includes different (instrument specific) formulations employed in important modern scientific echo sounder systems, and their relationship to the generic theory of abundance estimation. Prior literature is extended to provide more complete power-budget equations for fish abundance estimation and species identification, by accounting for echo integration, electrical termination, and the full range of electrical and acoustical echo sounder parameters. The expressions provide a consistent theoretical basis for improved understanding of conventional methods and instruments used today, also enabling improved sensitivity and error analyses, and correction possibilities.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2016-07-14
    Description: It is unlikely that cost–benefit approaches will be effective in identifying investments that support gender equality without a relevant “social framing”. Criteria for a “social framing” are lacking, yet cost–benefit approaches often guide investment decisions for disaster risk and environmental management. Mainstream approaches typically do a poor job identifying and characterizing costs and benefits, and often fail to address distributive concerns (i.e., how costs and benefits may be distributed throughout society, to whom, etc.). Gender-blind investments may project responsibility for equality “problems” onto one sex, potentially augmenting gender inequalities and disaster risk. This article examines evidence from the gender, disaster, and development literature to identify distributive concerns and criteria for an equitable “social framing” for economic evaluations. Primary distributive concerns identified regard assumptions of women’s homogeneity, agency, “active” participation, and the influence of customary practice and displacement on disaster vulnerability. The need for a “gender-responsive” “social framing” that considers the needs of men and women in relation to one another is evident. Second, cost–benefit studies focused on gender equality concerns are reviewed and the “social framing” is critiqued. Results show most studies are not “gender-responsive”. Women’s health concerns, often exacerbated by disasters, are sidelined by assumptions regarding distributive concerns and reductive outcome measures.
    Electronic ISSN: 2079-9276
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2016-07-21
    Description: This review describes a number of biologically inspired principles that have been applied to the visual guidance, navigation and control of Unmanned Aerial System (UAS). The current limitations of UAS systems are outlined, such as the over-reliance on GPS, the requirement for more self-reliant systems and the need for UAS to have a greater understanding of their environment. It is evident that insects, even with their small brains and limited intelligence, have overcome many of the shortcomings of the current state of the art in autonomous aerial guidance. This has motivated research into bio-inspired systems and algorithms, specifically vision-based navigation, situational awareness and guidance.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2016-07-30
    Description: The capability of flapping wings to generate lift is currently evaluated by using the lift coefficient C ¯ L , a dimensionless number that is derived from the basal equation that calculates the steady-state lift coefficient CL for fixed wings. In contrast to its simple and direct application to fixed wings, the equation for C ¯ L requires prior knowledge of the flow field along the wing span, which results in two integrations: along the wing span and over time. This paper proposes an alternate average normalized lift η ¯ L that is easy to apply to hovering and forward flapping flight, does not require prior knowledge of the flow field, does not resort to calculus for its solution, and its lineage is close to the basal equation for steady state CL. Furthermore, the average normalized lift η ¯ L converges to the legacy CL as the flapping frequency is reduced to zero (gliding flight). Its ease of use is illustrated by applying the average normalized lift η ¯ L to the hovering and translating flapping flight of bumblebees. This application of the normalized lift is compared to the same application using two widely-accepted legacy average lift coefficients: the first C ¯ L as defined by Dudley and Ellington, and the second lift coefficient by Weis-Fogh. Furthermore, it is shown that the average normalized lift η ¯ L has a physical meaning: that of the ratio of work exerted by the flapping wings onto the surrounding flow field and the kinetic energy available at the aerodynamic surfaces during the generation of lift. The working equation for the average normalized lift η ¯ L is derived and is presented as a function of Strouhal number, St.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2015-05-05
    Description: Unmanned aircraft must be characterized by a level of safety, similar to that of manned aircraft, when performing flights over densely populated areas. Dangerous situations or emergencies are frequently connected with the necessity to change the profiles and parameters of a flight as well as the flight plans. The aim of this work is to present the methods used to determine an Unmanned Aircraft System’s (UAS) flight profile after a dangerous situation or emergency occurs. The analysis was limited to the possibility of an engine system emergency and further flight continuing along a trajectory of which the shape depends on the type of the emergency. The suggested method also enables the determination of an optimal flying trajectory, based on the territory of a special protection zone (for example, large populated areas), in the case of an emergency that would disable continuation of the performed task. The method used in this work allows researchers, in a simplified way, to solve a variation task using the Ritz–Galerkin method, consisting of an approximate solution of the boundary value problem to determine the optimal flight path. The worked out method can become an element of the on-board system supporting UAS flight control.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2015-05-07
    Description: The impact of global climate change on coral reefs is expected to be most profound at the sea surface, where fertilization and embryonic development of broadcast-spawning corals takes place. We examined the effect of increased temperature and elevated CO2 levels on the in vitro fertilization success and initial embryonic development of broadcast-spawning corals using a single male:female cross of three different species from mid- and high-latitude locations: Lyudao, Taiwan (22° N) and Kochi, Japan (32° N). Eggs were fertilized under ambient conditions (27 °C and 500 μatm CO2) and under conditions predicted for 2100 (IPCC worst case scenario, 31 °C and 1000 μatm CO2). Fertilization success, abnormal development and early developmental success were determined for each sample. Increased temperature had a more profound influence than elevated CO2. In most cases, near-future warming caused a significant drop in early developmental success as a result of decreased fertilization success and/or increased abnormal development. The embryonic development of the male:female cross of A. hyacinthus from the high-latitude location was more sensitive to the increased temperature (+4 °C) than the male:female cross of A. hyacinthus from the mid-latitude location. The response to the elevated CO2 level was small and highly variable, ranging from positive to negative responses. These results suggest that global warming is a more significant and universal stressor than ocean acidification on the early embryonic development of corals from mid- and high-latitude locations.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2015-05-13
    Description: Security control is becoming a major global issue in strategic locations, such as airports, official buildings, and transit stations. The agencies responsible for public security need powerful and sensitive tools to detect warfare agents and explosives. Volatile signature detection is one of the fastest and easiest ways to achieve this task. However, explosive chemicals have low volatility making their detection challenging. In this research, we developed and evaluated fast chromatographic methods to improve the characterization of volatile signatures from explosives samples. The headspace of explosives was sampled with solid phase micro-extraction fiber (SPME). Following this step, classical gas chromatography (GC) and comprehensive two-dimensional GC (GC×GC) were used for analysis. A fast GC approach allows the elution temperature of each analyte to be decreased, resulting in decreased thermal degradation of sensitive compounds (e.g., nitro explosives). Using fast GC×GC, the limit of detection is further decreased based on the cryo-focusing effect of the modulator. Sampling of explosives and chromatographic separation were optimized, and the methods then applied to commercial explosives samples. Implementation of fast GC methods will be valuable in the future for defense and security forensics applications.
    Electronic ISSN: 2227-9075
    Topics: Chemistry and Pharmacology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2015-05-14
    Description: In this paper, an ornithopter prototype that mimics the flapping motion of bird flight is developed, and the lift and thrust generation characteristics of different wing designs are evaluated. This project focused on the spar arrangement and material used for the wings that could achieves improved performance. Various lift and thrust measurement techniques are explored and evaluated. Various wings of insects and birds were evaluated to understand how these natural flyers with flapping wings are able to produce sufficient lift to fly. The differences in the flapping aerodynamics were also detailed. Experiments on different wing designs and materials were conducted and a paramount wing was built for a test flight. The first prototype has a length of 46.5 cm, wing span of 88 cm, and weighs 161 g. A mechanism which produced a flapping motion was fabricated and designed to create flapping flight. The flapping flight was produced by using a single motor and a flexible and light wing structure. A force balance made of load cell was then designed to measure the thrust and lift force of the ornithopter. Three sets of wings varying flexibility were fabricated, therefore lift and thrust measurements were acquired from each different set of wings. The lift will be measured in ten cycles computing the average lift and frequency in three different speeds or frequencies (slow, medium and fast). The thrust measurement was measure likewise but in two cycles only. Several observations were made regarding the behavior of flexible flapping wings that should aid in the design of future flexible flapping wing vehicles. The wings angle or phase characteristic were analyze too and studied. The final ornithopter prototype weighs only 160 g, has a wing span of 88.5 cm, that could flap at a maximum flapping frequency of 3.869 Hz, and produce a maximum thrust and lift of about 0.719 and 0.264 N respectively. Next, we proposed resonance type flapping wing utilizes the near resonance phenomenon of a two-degree of freedom elastic system, that is, the wing is supported by the springs for flapping and feathering motions. Being oscillated close to the resonance frequency of the system, only by the torque in flapping motion, the amplitude gained is a few times higher than that of normal case. The first prototype was made from acrylic using a laser cutting machine. The wings were made up of carbon rods and kite material Ripstop. First test showed that the wings were too heavy for the mechanism to work. The third prototype was a smaller single gear crank design which was fabricated using a 3D printer. Initial test proved that the second prototype could withstand the high frequency flapping and near resonance amplitude as designed. With remote control, the third prototype was able to take off, climb, cruise and land in flapping mode successfully.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2015-05-01
    Description: Research on shock wave mitigation in channels has been a topic of much attention in the shock wave community. One approach to attenuate an incident shock wave is to use obstacles of various geometries arranged in different patterns. This work is inspired by the study from Chaudhuri et al. (2013), in which cylinders, squares and triangles placed in staggered and non-staggered subsequent columns were used to attenuate a planar incident shock wave. Here, we present numerical simulations using a different obstacle pattern. Instead of using a matrix of obstacles, an arrangement of square or cylindrical obstacles placed along a logarithmic spiral curve is investigated, which is motivated by our previous work on shock focusing using logarithmic spirals. Results show that obstacles placed along a logarithmic spiral can delay both the transmitted and the reflected shock wave. For different incident shock Mach numbers, away from the logarithmic spiral design Mach number, this shape is effective to either delay the transmitted or the reflected shock wave. Results also confirm that the degree of attenuation depends on the obstacle shape, effective flow area and obstacle arrangement, much like other obstacle configurations.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2015-05-06
    Description: The present study investigates the performances of the three-dimensional multicomponent hydro-sedimentary model ROMS (Regional Ocean Modeling System) to predict near-surface suspended sediment concentrations (SSC) in the English Channel (western Europe). Predictions are assessed against satellite-retrieved observations from raw MODIS and MERIS images for the year 2008 characterized by the highest availability of cloud-free data. Focus is put on improvements obtained with: (1) SSC inputs at the open boundaries; and (2) simple parameterizations of the settling velocity and the critical shear stress. Sensitivity studies confirm the importance of the advection of fine-grained suspended sediments in the central waters of the English Channel exhibiting benefits of refined SSC estimations along the sea boundaries. Improvements obtained with modified formulations of the settling velocity and the critical shear stress finally suggest possible seasonal influences of biological activity and thermal stratification on near-surface SSC.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2015-05-07
    Description: Conservation agriculture (CA) is an increasingly adopted production system to meet the goals of sustainable crop production intensification in feeding a growing world population whilst conserving natural resources. Mechanization (especially power units, seeders, rippers and sprayers) is a key input for CA and smallholder farmers often have difficulties in making the necessary investments. Donors may be able to provide mechanization inputs in the short term, but this is not a sustainable solution as a machinery input supply chain needs to be built up to continue availability after external interventions cease. Local manufacture should be supported, as was the case in Brazil, but this is a slow development process, especially in sub-Saharan Africa. A more immediate solution is to equip and train CA service provision entrepreneurs. With the right equipment, selected for the needs of their local clientele, and the right technical and business management training, such entrepreneurs can make a livelihood by supplying high quality CA and other mechanization services on a fully costed basis. Elements of the required training, based on extensive field experience, are provided. To catalyse the growth of CA providers’ business, the market can be stimulated for an initial period by issuing e-vouchers for services and inputs.
    Electronic ISSN: 2076-3298
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2015-05-13
    Description: Over the last fifty years there has been a continual reduction in horticultural and agricultural biodiversity of nutritionally important plants, including those of the Solanaceae family. To add to this, the broad range of traditional crops, previously grown on a sustainable scale in some parts of the world, has been replaced by a narrow range of major crops grown as large-scale monocultures. In order to counteract this trend, and to help maintain a broad wealth of genetic resources, conservation is essential. This, in turn, helps to safeguard food security. A taxonomic inventory, covering the diversity of species in a plant group, is an important first step in conservation. The Solanaceae is one of the major plant families providing food species. A survey of the biodiversity, ethnobotany and taxonomy of subfamily Solanoideae was undertaken and is presented here as an inventory of food species. Fifteen genera provide species that are utilised for food across the world. Of these, only four genera contain economically significant cultivated food cropspecies. The majority of these are in the genus Solanum, whilst Capsicum, Physalis and Lycium contribute the remainder of cultivated crop species. These genera and others also comprise species that are semi-cultivated, tolerated as useful weeds, or gathered from the wild.
    Electronic ISSN: 2079-9276
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2014-12-17
    Description: Recent advances in smart structures and multifunctional materials have facilitated many novel aerospace technologies such as morphing aircraft. A morphing aircraft, bio-inspired by natural fliers, has gained a lot of interest as a potential technology to meet the ambitious goals of the Advisory Council for Aeronautics Research in Europe (ACARE) Vision 2020 and the FlightPath 2050 documents. A morphing aircraft continuously adjusts its wing geometry to enhance flight performance, control authority, and multi-mission capability.[...]
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2014-12-17
    Description: The investigation of aviation alternative fuels has increased significantly in recent years in an effort to reduce the environment and climate impact by aviation industry. Special requirements have to be met for qualifying as a suitable aviation fuel. The fuel has to be high in energy content per unit of mass and volume, thermally stable and avoiding freezing at low temperatures. There are also many other special requirements on viscosity, ignition properties and compatibility with the typical aviation materials. There are quite a few contending alternative fuels which can be derived from coal, natural gas and biomass.[...]
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2015-04-28
    Description: This study addresses the flight-path planning problem for multirotor aerial vehicles (AVs). We consider the specific features and requirements of real-time flight-path planning and develop a rapidly-exploring random tree (RRT) algorithm to determine a preliminary flight path in three-dimensional space. Since the path obtained by the RRT may not be optimal due to the existence of redundant waypoints. To reduce the cost of energy during AV’s flight, the excessive waypoints need to be refined. We revise the A-star algorithm by adopting the heading of the AV as the key indices while calculating the cost. Bezier curves are finally proposed to smooth the flight path, making it applicable for real-world flight.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2015-04-28
    Description: The aerospace community is planning for growth in Unmanned Aerial Systems (UAS) funding and research opportunities. The premise that UAS will revolutionize aerospace appears to be unfolding based on current trends. There is also an anticipation of an increasing number of new platforms and research investment, which is likely but must be analysed carefully to determine where the opportunities lie. This paper draws on the state of technology, history and systems engineering. We explore what aspects of UAS will be the result of aerospace science advances and what aspects will be incremental engineering and systems integration. It becomes apparent that, for academia, the largest opportunities may exist in small and micro UAS domain due to the novelty of aerospace engineering on a small scale.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2015-04-03
    Description: Using magnetic particles as a solid-phase extraction system is the most frequently used micro-technique for DNA isolation. Particles with a complete covering of magnetic cores by a polymer are hence preferred. Quantitative polymerase chain reaction (qPCR) was used for the evaluation of the polymer coating efficiency of hydrophilic magnetic poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) (P(HEMA-co-GMA)) and poly(glycidyl methacrylate) (PGMA) microspheres with/without carboxyl groups. The inhibition effect of magnetic microspheres was identified by the shift in Cq values (ΔCq) after the addition of different amounts of microspheres to PCR mixtures. With the increase of microsphere concentrations, the shift in Cq values to higher values was usually observed. P(HEMA-co-GMA) microspheres containing carboxyl groups extinguished the fluorescence at concentrations over 2 mg mL−1 in a PCR mixture without any influence on the synthesis of PCR products. No PCR products (inhibition of DNA amplification) were detected in the presence of more than 0.8 mg mL−1 in the PCR mixture of PGMA microspheres. Atomic force microscopy (AFM) was used for the determination of the surface morphology of the microspheres. The microspheres were spherical, and their surface was non-porous.
    Electronic ISSN: 2227-9075
    Topics: Chemistry and Pharmacology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2015-03-27
    Description: Climate change would significantly affect the temporal pattern and amount of annual precipitation at the regional level, which in turn would affect the regional water resources and future water availability. The Peace Region is a critical region for northern British Columbia’s social, environmental, and economic development, due to its potential in various land use activities. This study investigated the impacts of future climate change induced precipitation on water resources under the A2 and B1 greenhouse gas emission scenarios for 2020–2040 in a study area along the main river of the Kiskatinaw River watershed in the Peace Region as a case study using the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) modeling system. The simulation results showed that climate change induced precipitation changes significantly affect monthly, seasonal and annual stream flows. With respect to the mean annual stream flow of the reference period (2000–2011), the mean annual stream flow from 2020 to 2040 under the A2 and B1 scenarios is expected to increase by 15.5% and 12.1%, respectively, due to the increased precipitation (on average 5.5% in the A2 and 3.5% in the B1 scenarios) and temperature (on average 0.76 °C in the A2 and 0.57 °C in the B1 scenarios) predicted, with respect to that under the reference period. From the seasonal point of view, the mean seasonal stream flow during winter, spring, summer and fall from 2020 to 2040 under the A2 scenario is expected to increase by 10%, 16%, 11%, and 11%, respectively. On the other hand, under the B1 scenario these numbers are 6%, 15%, 6%, and 8%, respectively. Increased precipitation also resulted in increased groundwater discharge and surface runoff. The obtained results from this study will provide valuable information for the study area in the long-term period for seasonal and annual water extractions from the river and allocation to the stakeholders for future water supply, and help develop a regional water resources management plan for climate change induced precipitation changes.
    Electronic ISSN: 2225-1154
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2015-04-09
    Description: Due to the finite nature of non-renewable mineral and energy resources such as coal, resource extraction is inherently unsustainable; however, mining and related activities can contribute to sustainable development. Indeed, the principles of corporate social responsibility (CSR) require that mine operators design and conduct their activities in ways that provide for net positive impacts on surrounding communities and environments. In Central Appalachia, there appears to be a particularly ripe opportunity for the coal industry to put CSR to work: participation in sustainable solutions to the long-standing problem of inadequately treated wastewater discharges—which not only represent a potential human health hazard, but also contribute to the relatively high incidence of bacterial impairments in surface waters in the region. In this paper, we outline the underlying factors of this problem and the advantages of industry-aided solutions in a region where limited economic and technical resources are not always aligned with social and environmental needs. We also suggest a framework for problem-solving, which necessarily involves all interested stakeholders, and identify the primary challenges that must be overcome in pursuit of sustainable solutions.
    Electronic ISSN: 2079-9276
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2015-04-16
    Description: The formation and occurrence of urban heat island (UHI) is a result of rapid urbanization and associated concretization. Due to intensification of heat combined with high pollution levels, urban areas expose humans to unexpected health risks. In this context, the study aims at comparing the UHI in the two largest metropolitan cities of India, i.e., Delhi and Mumbai. The presence of surface UHI is analyzed using the Landsat 5 TM image of 5 May 2010 for Delhi and the 17 April 2010 image for Mumbai. The validation of the heat island is done in relation to the Normalized Difference Vegetation Index (NDVI) patterns. The study reveals that built-up and fallow lands record high temperatures, whereas the vegetated areas and water bodies exhibit lower temperatures. Delhi, an inland city, possesses mixed land use and the presence of substantial tree cover along roads; the Delhi Ridge forests and River Yamuna cutting across the city have a high influence in moderating the surface temperatures. The temperature reaches a maximum of 35 °C in West Delhi and a minimum of 24 °C in the east at the River Yamuna. Maximum temperature in East Delhi goes to 30 °C, except the border areas. North, Central and south Delhi have low temperatures (28 °C–31 °C), but the peripheral areas have high temperatures (36 °C–37 °C). The UHI is not very prominent in the case of Delhi. This is proven by the correlations of surface temperature with NDVI. South Delhi, New Delhi and areas close to River Yamuna have high NDVI and, therefore, record low temperatures. Mumbai, on the other hand, is a coastal city with lower tree cover than Delhi. The Borivilli National Park (BNP) is in the midst of dense horizontal and vertical growth of buildings. The UHI is much stronger where the heat is trapped that is, the built-up zones. There are four small rivers in Mumbai, which have low carrying capacity. In Mumbai suburban district, the areas adjoining the creeks, sea and the lakes act as heat sinks. The coastal areas in South Mumbai record temperatures of 28 °C–31 °C; the Bandra-Kurla Complex has a high range of temperature i.e., 31 °C–36 °C. The temperature witnessed at Chattrapati Shivaji International Airport is as high as 38 °C. The temperature is nearly 37 °C–38 °C in the Dorai region in the Mumbai suburban district. The BNP has varied vegetation density, and therefore, the temperature ranges from 27 °C–31 °C. Powai Lake, Tulsi Lake and other water bodies record the lowest temperatures (24 °C–26 °C). There exists a strong negative correlation between NDVI and UHI of Mumbai, owing to less coverage of green and vegetation areas.
    Electronic ISSN: 2076-3298
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2015-04-17
    Description: The Caucasus Region has been affected by an increasing number of heat waves during the last decades, which have had serious impacts on human health, agriculture and natural ecosystems. A dataset of 22 homogenized, daily maximum (Tmax) and minimum (Tmin) air temperature series is developed to quantify climatology and summer heat wave changes for Georgia and Tbilisi station between 1961 and 2010 using the extreme heat factor (EHF) as heat wave index. The EHF is studied with respect to eight heat wave aspects: event number, duration, participating heat wave days, peak and mean magnitude, number of heat wave days, severe and extreme heat wave days. A severity threshold for each station was determined by the climatological distribution of heat wave intensity. Moreover, heat wave series of two indices focusing on the 90th percentile of daily minimum temperature (CTN90p) and the 90th percentile of daily maximum temperature (CTX90p) were compared. The spatial distribution of heat wave characteristics over Georgia showed a concentration of high heat wave amplitudes and mean magnitudes in the Southwest. The longest and most frequently occurring heat wave events were observed in the Southeast of Georgia. Most severe heat wave events were found in both regions. Regarding the monthly distribution of heat waves, the largest proportion of severe events and highest intensities are measured during May. Trends for all Georgia-averaged heat wave aspects demonstrate significant increases in the number, intensity and duration of low- and high-intensity heat waves. However, for the heat wave mean magnitude no change was observed. Heat wave trend magnitudes for Tbilisi mainly exceed the Georgia-averages and its surrounding stations, implying urban heat island (UHI) effects and synergistic interactions between heat waves and UHIs. Comparing heat wave aspects for CTN90p and CTX90p, all trend magnitudes for CTN90p were larger, while the correlation between the annual time-series was very high among all heat wave indices analyzed. This finding reflects the importance of integrating the most suitable heat wave index into a sector-specific impact analysis.
    Electronic ISSN: 2225-1154
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2016-03-25
    Description: A semi-empirical method is presented to estimate the angular excursion and the lift loss associated with static hysteresis on an airfoil. Wind tunnel data of various airfoils is used to define and validate the methodology. The resulting equation provides a relationship between the size of the hysteresis loop and characteristics of the airfoil. Comparisons of the equation with experiment show encouraging agreement both in terms of the magnitude of the lift loss and the extent of the loop.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2016-04-01
    Description: Ensembles of general circulation model (GCM) integrations yield predictions for meteorological conditions in future months. Such predictions have implicit uncertainty resulting from model structure, parameter uncertainty, and fundamental randomness in the physical system. In this work, we build probabilistic models for long-term forecasts that include the GCM ensemble values as inputs but incorporate statistical correction of GCM biases and different treatments of uncertainty. Specifically, we present, and evaluate against observations, several versions of a probabilistic forecast for gridded air temperature 1 month ahead based on ensemble members of the National Centers for Environmental Prediction (NCEP) Climate Forecast System Version 2 (CFSv2). We compare the forecast performance against a baseline climatology based probabilistic forecast, using average information gain as a skill metric. We find that the error in the CFSv2 output is better represented by the climatological variance than by the distribution of ensemble members because the GCM ensemble sometimes suffers from unrealistically little dispersion. Lack of ensemble spread leads a probabilistic forecast whose variance is based on the ensemble dispersion alone to underperform relative to a baseline probabilistic forecast based only on climatology, even when the ensemble mean is corrected for bias. We also show that a combined regression based model that includes climatology, temperature from recent months, trend, and the GCM ensemble mean yields a probabilistic forecast that outperforms approaches using only past observations or GCM outputs. Improvements in predictive skill from the combined probabilistic forecast vary spatially, with larger gains seen in traditionally hard to predict regions such as the Arctic.
    Electronic ISSN: 2225-1154
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2016-04-09
    Description: The morphological change of a headland bay beach—Tenby, West Wales, UK—was analysed over a 73-year period (1941–2014). Geo-referenced aerial photographs were used to extract shoreline positions which were subsequently compared with wave models based on storm event data. From the 1941 baseline, results showed shoreline change rates reduced over time with regression models enabling a prediction of shoreline equilibrium circa 2061. Further temporal analyses showed southern and central sector erosion and northern accretion, while models identified long-term plan-form rotation, i.e., a negative phase relationship between beach extremities and a change from negative to positive correlation within the more stable central sector. Models were then used in conjunction with an empirical 2nd order polynomial equation to predict the 2061 longshore equilibrium shoreline position under current environmental conditions. Results agreed with previous regional research which showed that dominant south and southwesterly wave regimes influence south to north longshore drift with counter drift generated by less dominant easterly regimes. The equilibrium shoreline was also used to underpin flood and inundation assessments, identifying areas at risk and strategies to increase resilience. UK shoreline management plans evaluate coastal vulnerability based upon temporal epochs of 20, 50 and 100 years. Therefore, this research evaluating datasets spanning 73 years has demonstrated the effectiveness of linear regression in integrating temporal and spatial consequences of sea level rise and storms. The developed models can be used to predict future shoreline positions aligned with shoreline management plan epochs and inform embayed beach shoreline assessments at local, regional and international scales, by identifying locations of vulnerability and enabling the development of management strategies to improve resilience under scenarios of sea level rise and climate change.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2016-04-13
    Description: The study examined the spatiotemporal distribution of drought in the Maasai rangelands of Kenya. The implications of this distribution, in concert with the documented existing and/or projected social and biophysical factors, on critical rangeland resources in Maasai-pastoralism are discussed using an integrated approach. Participatory interviews with the Maasai, retrieval from archives, and acquisition from instrument measurements provided data for the study. Empirical evidence of the current study reveals that drought occurrences in this rangeland have been recurrent, widespread, cyclic, sometimes temporally clustered, and have manifested with varying intensities across spatial, temporal, and, occasionally, social scales; and they have more intensity in lower than higher agroecological areas. An estimated 86% of drought occurrences in this rangeland, over the last three decades alone, were of major drought category. The 2000s, with four major drought events including two extreme droughts, are an important drought period. A strong consensus exists among the Maasai regarding observed drought events. In Maasai-pastoralism, the phenomenon called drought, pastoralist drought, is simultaneously multivariate and multiscalar: its perception comprises the simultaneous manifestation of cross-scale meteorological, socioeconomic, and environmental factors and processes, and their various combinations. The inherent simultaneous multivariate and scalar nature of the pastoralist drought distinguishes it from the conventional drought types, particularly the meteorological drought that predominantly guides drought and resource management in the rangelands of Kenya. In Maasai-pastoralism, the scarcely used (33%) meteorological drought is construed as rainfall delay/failure across spatial and/or temporal scale, and never its reduced amount. Collectively, the current findings reveal that knowledge about drought affects the way the manifestation of this climatic hazard is perceived, communicated, and characterized; hence, ceteris paribus, alongside its spatiotemporal distribution, shapes the nature of the adaptive capacity of and resource management in Maasai-pastoralism. Studies that anticipate enhancing the drought-adaptive capacity of the Maasai should account for cross-scale social and biophysical factors, their processes, and interactions; they must engage the affected inhabitants, and utilize and integrate multiple data sources and approaches. These necessities become more crucial for informing adaptation under the present spatiotemporal distribution of drought as well as in relation to the projected increase in occurrence and intensity of this climatic hazard as the climate continues to change, and as pressures from socioeconomic globalization persistently proliferate into the Maasai’s social and biophysical landscapes.
    Electronic ISSN: 2225-1154
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2015-12-26
    Description: Recent years have seen increased survey and sampling expeditions to the Clarion-Clipperton Zone (CCZ), central Pacific Ocean abyss, driven by commercial interests from contractors in the potential extraction of polymetallic nodules in the region. Part of the International Seabed Authority (ISA) regulatory requirements are that these contractors undertake environmental research expeditions to their CCZ exploration claims following guidelines approved by the ISA Legal and Technical Commission (ISA, 2010). Section 9 (e) of these guidelines instructs contractors to “…collect data on the sea floor communities specifically relating to megafauna, macrofauna, meiofauna, microfauna, nodule fauna and demersal scavengers”. There are a number of methodological challenges to this, including the water depth (4000–5000 m), extremely warm surface waters (~28 °C) compared to bottom water (~1.5 °C) and great distances to ports requiring a large and long seagoing expedition with only a limited number of scientists. Both scientists and regulators have recently realized that a major gap in our knowledge of the region is the fundamental taxonomy of the animals that live there; this is essential to inform our knowledge of the biogeography, natural history and ultimately our stewardship of the region. Recognising this, the ISA is currently sponsoring a series of taxonomic workshops on the CCZ fauna and to assist in this process we present here a series of methodological pipelines for DNA taxonomy (incorporating both molecular and morphological data) of the macrofauna and megafauna from the CCZ benthic habitat in the recent ABYSSLINE cruise program to the UK-1 exploration claim. A major problem on recent CCZ cruises has been the collection of high-quality samples suitable for both morphology and DNA taxonomy, coupled with a workflow that ensures these data are made available. The DNA sequencing techniques themselves are relatively standard, once good samples have been obtained. The key to quality taxonomic work on macrofaunal animals from the tropical abyss is careful extraction of the animals (in cold, filtered seawater), microscopic observation and preservation of live specimens, from a variety of sampling devices by experienced zoologists at sea. Essential to the long-term iterative building of taxonomic knowledge from the CCZ is an “end-to-end” methodology to the taxonomic science that takes into account careful sampling design, at-sea taxonomic identification and fixation, post-cruise laboratory work with both DNA and morphology and finally a careful sample and data management pipeline that results in specimens and data in accessible open museum collections and online repositories.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2016-01-06
    Description: Previous work suggests that changes in seasonality could lead to a 70% reduction in the extent of the Amazon rainforest. The primary cause of the dieback of the rainforest is a lengthening of the dry season due to a weakening of the large-scale tropical circulation. Here we examine these changes in the seasonal cycle. Under present day conditions the Amazon climate is characterized by a zonal separation of the dominance of the annual and semi-annual seasonal cycles. This behavior is strongly modified under greenhouse warming conditions, with the annual cycle becoming dominant throughout the Amazon basin, increasing differences between the dry and wet seasons. In particular, there are substantial changes in the annual cycle of temperature due to the increase in the temperature of the warmest month, but the lengthening of the dry season is believed to be particularly important for vegetation-climate feedbacks. Harmonic analysis performed to regional climate model simulations yields results that differ from the global climate model that it is forced from, with the regional model being more sensitive to changes in the seasonal cycle.
    Electronic ISSN: 2225-1154
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2016-01-06
    Description: A novel method for the labeling and rapid separation of morphine, morphine-3-beta-d-glucuronide (M3G) and morphine-6-beta-d-glucuronide (M6G) in human urine employing a new boronic acid functionalized squarylium dye (SQ-BA3) and capillary electrophoresis with laser induced fluorescence detection (CE-LIF) is described. The spectrochemical properties, solution stability, pH range, and mechanisms for interactions with morphine and its metabolites were first established for SQ-BA3, followed by optimization of an on-column labeling procedure and CE-LIF method. SQ-BA3 itself was shown to be unstable and weakly fluorescent in aqueous buffers due to aggregate formation. However, SQ-BA3 showed a relative stability and dramatic increase in fluorescence intensity upon the addition of morphine, M3G, and M6G. Because of the low background fluorescence of this dye, on-column labeling was feasible, leading to a simple and rapid analytical method with the potential for clinical applications.
    Electronic ISSN: 2227-9075
    Topics: Chemistry and Pharmacology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2016-01-07
    Description: There are strong relationships between climate and ecosystems. With the prospect of anthropogenic forcing accelerating climate change, there is a need to understand how terrestrial vegetation responds to this change as it influences the carbon balance. Previous studies have primarily addressed this question using empirically based models relating the observed pattern of vegetation and climate, together with scenarios of potential future climate change, to predict how vegetation may redistribute. Unlike previous studies, here we use an advanced mechanistic, individually based, ecosystem model to predict the terrestrial vegetation response from future climate change. The use of such a model opens up opportunities to test with remote sensing data, and the possibility of simulating the transient response to climate change over large domains. The model was first run with a current climatology at half-degree resolution and compared to remote sensing data on dominant plant functional types for northern North America for validation. Future climate data were then used as inputs to predict the equilibrium response of vegetation in terms of dominant plant functional type and carbon redistribution. At the domain scale, total forest cover changed by ~2% and total carbon storage increased by ~8% in response to climate change. These domain level changes were the result of much larger gross changes within the domain. Evergreen forest cover decreased 48% and deciduous forest cover increased 77%. The dominant plant functional type changed on 58% of the sites, while total carbon in deciduous vegetation increased 107% and evergreen vegetation decreased 31%. The percent of terrestrial carbon from deciduous and evergreen plant functional types changed from 27%/73% under current climate conditions, to 54%/46% under future climate conditions. These large predicted changes in vegetation and carbon in response to future climate change are comparable to previous empirically based estimates, and motivate the need for future development with this mechanistic model to estimate the transient response to future climate changes.
    Electronic ISSN: 2225-1154
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...