ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (6)
  • Carbon cycle
  • Massachusetts Institute of Technology and Woods Hole Oceanographic Institution  (4)
  • Instituto de Oceanología  (1)
  • Nature Publishing Group  (1)
  • 1
    Publication Date: 2021-05-19
    Description: Se realizaron cinco muestreos entre enero de 2007 y junio de 2008 a la zona costera del municipio Playa, con el fin de evaluar los contenidos de los compuestos del ciclo del carbono. Los parámetros estudiados en la matriz agua fueron carbón orgánico, pH, alcalinidad total, alcalinidad al carbonato, dióxido de carbono total, dióxido de carbono libre, presión parcial de CO2, y contenidos de bicarbonato y carbonato. Los compuestos de carbono orgánico e inorgánico tuvieron una distribución muy heterogénea, los valores de pH (8,24±0,22) y alcalinidad total (2523±119 μmol/kg) indican que el área tiene un comportamiento alcalino, estos montos fueron similares a los encontrados en aguas de la plataforma marina cubanos y superiores a los consignados para el ambiente oceánico. El bicarbonato constituye el 77 % del carbono inorgánico total.
    Description: Five samplings were carried out between January 2007 and June 2008 in the coastal zone of Playa Municipality, with the purpose of evaluating the contents of carbon cycle compounds. The studied water matrix parameters were organic carbon, pH, total alkalinity, carbonate alkalinity, total carbon dioxide, free carbon dioxide, partial CO2 pressure, and bicarbonate and carbonate contents. Organic and inorganic carbon compounds presented a very heterogeneous distribution; pH values (8,24±0,22) and total alkalinity (2523±119 μmol/kg) indicate that the area has an alkaline behavior. These values were similar to those found in waters of the Cuban marine shelf, and higher than those registered for the oceanic environment. Bicarbonate ions constitute 77% of the total inorganic carbon.
    Description: Published
    Description: Cambio climático, Climate Change
    Keywords: Carbon dioxide ; Alkalinity ; Carbon cycle ; Carbon dioxide ; Alkalinity ; Carbon cycle
    Repository Name: AquaDocs
    Type: Journal Contribution
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2011
    Description: The sinking flux of particulate matter into the ocean interior is an oceanographic phenomenon that fuels much of the metabolic demand of the subsurface ocean and affects the distribution of carbon and other elements throughout the biosphere. In this thesis, I use a new suite of observations to study the dynamics of marine particulate matter at the contrasting sites of the subtropical Sargasso Sea near Bermuda and the waters above the continental shelf of the Western Antarctic Peninsula (WAP). An underwater digital camera system was employed to capture images of particles in the water column. The subsequent analysis of these images allowed for the determination of the particle concentration size distribution at high spatial, depth, and temporal resolutions. Drifting sediment traps were also deployed to assess both the bulk particle flux and determine the size distribution of the particle flux via image analysis of particles collected in polyacrylamide gel traps. The size distribution of the particle concentration and flux were then compared to calculate the average sinking velocity as a function of particle size. I found that the average sinking velocities of particles ranged from about 10-200 m d-1 and exhibited large variability with respect to location, depth, and date. Particles in the Sargasso Sea, which consisted primarily of small heterogeneous marine snow aggregates, sank more slowly than the rapidly sinking krill fecal pellets and diatom aggregates of the WAP. Moreover, the average sinking velocity did not follow a pattern of increasing velocities for the larger particles, a result contrary to what would be predicted from a simple formulation of Stokes’ Law. At each location, I derived a best-fit fractal correlation between the flux size distribution and the total carbon flux. The use of this relationship and the computed average sinking velocities enabled the estimation of particle flux from measurements of the particle concentration size distribution. This approach offers greatly improved spatial and temporal resolution when compared to traditional sediment trap methods for measuring the downward flux of particulate matter. Finally, I deployed specialized in situ incubation chambers to assess the respiration rates of microbes attached to sinking particles. I found that at Bermuda, the carbon specific remineralization rate of sinking particulate matter ranged from 0.2 to 1.1 d-1, while along the WAP, these rates were very slow and below the detection limit of the instruments. The high microbial respiration rates and slow sinking velocities in the Sargasso Sea resulted in the strong attenuation of the flux with respect to depth, whereas the rapid sinking velocities and slow microbial degradation rates of the WAP resulted in nearly constant fluxes with respect to depth.
    Description: The Scurlock Bermuda Biological Station for Research Fund provided travel support to and from Bermuda. A grant from the National Science Foundation (NSF) Carbon and Water Program (06028416) enabled all the Sargasso Sea research as well as the opportunity to develop and test much of the methodology presented in this thesis. Internal awards from the WHOI Rinehart Access to the Sea Program and the WHOI Coastal Oceans Institute provided early funding that supported my first season of research in Antarctica and were instrumental in securing the larger external NSF Office of Polar Programs (OPP) Western Antarctic Peninsula Flux Project (OPP 0838866) grant for a second year of science in the region. The NSF OPP Palmer Long-Term Ecological Research Project and the Food for Benthos on the Antarctic Continental Shelf Project provided logistical support in the region. Phoebe Lam and Scott Doney’s grant from the WHOI Ocean Carbon and Climate Institute supported a semester of my time. The Henry G. Houghton Fund and the MIT Student Assistance Fund subsidized educational costs, textbooks, equipment, and travel expenses to conferences. In my first year I was supported by funding from Scott Doney’s NSF grant (OCCE-0312710).
    Keywords: Sediment transport ; Carbon cycle ; Laurence M. Gould (Ship) Cruise LMG0901 ; Laurence M. Gould (Ship) Cruise LMG0902 ; Laurence M. Gould (Ship) Cruise LMG1001 ; Nathaniel B. Palmer (Ship) Cruise NBP1002
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and Woods Hole Oceanographic Institution August 1994
    Description: The work presented here consists of a literature review and calculations to estimate the importance of photochemistry to carbon cycling in the oceans, followed by a photophysical study of a series of stable nitroxide radical probes that have been used for the quantitative detection of individual carbon-centered radicals and reducing species in natural waters. Two appendices follow. The first contains preliminary experiments utilizing one of the nitroxide probes in an investigation of hydroxyl radical production rates and steadystate concentrations in seawater. The second consists of an investigation of the singlet lifetimes of humic acids (HA), in order to aid in understanding their photochemical cycling and nt1uence on other compounds. The impact of photochemical reactions on global oceanic carbon cycling was calculated from literature values. The results indicate that between 1 and 13% of all dissolved organic carbon in the oceans is oxidized photochemically. This is a significant flux term, much larger than that of riverine input for example. A photophysical study of nitroxide radical probes was undertaken. For all of the compounds studied, steady-state absorption and fluorescence spectra were identical to those of the parent fluorophores. A decrease in fluorescence lifetime and quantum yield of tens- to hundreds-fold was observed for the paramagnetic compounds relative to their diamagnetic counterparts. Very rapid fluorescence quenching rates (3 to 80 x 1010 s-1) were calculated for the fluorescamine moiety of the paramagnetic nitroxide compounds in a variety of solvents. Calculated energy minimized geometries were very similar for all compounds which implies that geometric differences are not responsible for the variations found m fluorescence lifetimes and quantum yields between compounds. Calculated Forster and Dexter overlap integrals do not support deexcitation by these mechanisms. Time-resolved absorption measurements resulted in no evidence for transient species due to either intersystem crossing to the triplet state or charge transfer. Of the mechanisms considered, direct internal conversion to the ground state, is most likely given our results. An investigation of the utility of 3-(aminomethyl)-2,2,5,5-tetramethyl-1- pyrrolidinyloxy free radical (3-amp) for detection and quantification of hydroxyl radicals in natural waters found that the addition of primary probe compounds resulted in the generation of secondary carbon-centered radicals that were successfully trapped by 3-amp. Competition kinetics experiments with dimethyl sulfoxide resulted in a natural scavenger rate constant that matched previous literature results for coastal seawater. As expected, the addition of formate resulted in decreases, and the addition of nitrite in increases, in the hydroxyl radical trapping rate by this method. The resulting quantum yield values were about an order of magnitude higher than previous literature results. However, probably due to the use of different latitudes at which to estimate the incident solar radiation at the sea surface, hydroxyl radical production rate and steady-state concentrations calculated were about an order of magnitude lower than literature results. One experiment showed no increase in the hydroxyl radical production rate from Milli-Q water to oligotrophic and coastal seawater although the sample absorption coefficients increase by a factor of more than 20. However a single experiment comparing three different coastal seawater samples did show a correlation between absorption and hydroxyl radical production rate. More detailed work is needed to recognize the full potential of this method. Marine HA fluorescence lifetime measurements utilizing time-resolved single photon counting revealed a large portion of chromophores with very short (20-60 ps) lifetimes and low quantum yields. At least three distinct lifetimes could be distinguished by iterative deconvolution, although they probably result from the grouping of a multitude of individual chromophores. The theory of calculating the quantum yields of individual chromophores measured in a mixture is developed and calculations are made, although from an incomplete data set. Shorter fluorescent lifetimes for a given chromophore center within HA result in smaller quantum yields and are thought to be caused by very rapid competing intramolecular dark pathways such as energy or electron transfer Preliminary work investigating changes in time-resolved fluorescent lifetimes due to different sources of HA (Orinoco vs. Suwanee Rivers) and solution types (seawater vs. standard buffer) showed little variability.
    Description: This material is based upon work supported under a National Science Foundation Graduate Research Fellowship.
    Keywords: Photochemistry ; Carbon cycle ; Argo Maine (Ship) Cruise ; Weatherbird II (Ship) Cruise
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2018
    Description: Life is ubiquitous in the environment and an important mediator of Earth’s carbon cycle, but quantifying the contribution of microbial biomass and its metabolic fluxes is difficult, especially in spatially and temporally-remote environments. Microbes leave behind an often scarce, unidentifiable, or nonspecific record on geologic timescales. This thesis develops and employs novel geochemical and genetic approaches to illuminate diagnostic signals of microbial metabolisms. Field studies, laboratory cultures, and computational models explain how methanogens produce unique nonequilibrium methane clumped isotopologue (13CH3D ) signals that do not correspond to growth temperature. Instead, Δ13CH3D values may be driven by enzymatic reactions common to all methanogens, the C-H bond inherited from substrate precursors including acetate and methanol, isotope exchange, or environmental processes such as methane oxidation. The phylogenetic relationship between substrate-specific methyl-corrinoid proteins provides insight into the evolutionary history of methylotrophic methanogenesis. The distribution of corrinoid proteins in methanogens and related bacteria suggests that these substrate-specific proteins evolved via a complex history of horizontal gene transfer (HGT), gene duplication, and loss. Furthermore, this work identifies a previously unrecognized HGT involving chitinases (ChiC/D) distributed between fungi and bacteria (∼650 Ma). This HGT is used to tether fossil-calibrated ages from within fungi to bacterial lineages. Molecular clock analyses show that multiple clades of bacteria likely acquired chitinase homologs via HGT during the late Neoproterozoic into the early Paleozoic. These results also show that, following these HGT events, recipient terrestrial bacterial clades diversified ∼400-500 Ma, consistent with established timescales of arthropod and plant terrestrialization. Divergence time estimates for bacterial lineages are broadly consistent with the dispersal of chitinase genes throughout the microbial world in direct response to the evolution and expansion of detrital-chitin producing groups including arthropods. These chitinases may aid in dating microbial lineages over geologic time and provide insight into an ecological shift from marine to terrestrial systems in the Proterozoic and Phanerozoic eons. Taken together, this thesis may be used to improve assessments of microbial activity in remote environments, and to enhance our understanding of the evolution of Earth’s carbon cycle.
    Description: Supported by the National Science Foundation (NSF), the NSF Graduate Research Fellowship Program, the MIT Energy Initiative and its partnership with Shell, the Neil and Anna Rasmussen Foundation Fund, and the Grayce B. Kerr Fellowship. This research and its dissemination was supported by funds from the Deep Carbon Observatory, NASA Astrobiology Institute, WHOI Academic Programs Office, and the MIT Graduate Student Council.
    Keywords: Microorganisms ; Microbial metabolism ; Carbon cycle ; Phylogeny
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Communications 9 (2018): 121, doi:10.1038/s41467-017-02504-1.
    Description: Sediments in deep ocean trenches may contain crucial information on past earthquake history and constitute important sites of carbon burial. Here we present 14C data on bulk organic carbon (OC) and its thermal decomposition fractions produced by ramped pyrolysis/oxidation for a core retrieved from the 〉7.5 km-deep Japan Trench. High-resolution 14C measurements, coupled with distinctive thermogram characteristics of OC, reveal hemipelagic sedimentation interrupted by episodic deposition of pre-aged OC in the trench. Low δ13C values and diverse 14C ages of thermal fractions imply that the latter material originates from the adjacent margin, and the co-occurrence of pre-aged OC with intervals corresponding to known earthquake events implies tectonically triggered, gravity-flow-driven supply. We show that 14C ages of thermal fractions can yield valuable chronological constraints on sedimentary sequences. Our findings shed new light on links between tectonically driven sedimentological processes and marine carbon cycling, with implications for carbon dynamics in hadal environments.
    Description: This study is supported by Doc.Mobility Fellowship (P1EZP2_159064) (R.B.) from the Swiss National Science Foundation (SNSF). This work is also supported by SNF “CAPS-LOCK” project 200021_140850 (T.I.E.), by SNSF grant (133481) (M.S.), and Austrian Science Foundation (P 29678-N28) (M.S.).
    Keywords: Carbon cycle ; Sedimentology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2023-02-10
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Marine Chemistry at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2023.
    Description: Marine dissolved organic matter (DOM) is an actively cycling reservoir of carbon containing thousands of unique compounds. To describe the complex dynamics that govern the biological transformation and decomposition of compounds in this molecular black box, models of DOM reactivity use chemical characteristics, as well as environmental parameters, to describe trends in the turnover time of classes of DOM. In this thesis, I describe two projects that examine hypotheses regarding the turnover of two classes of DOM. In the 1st project, I test the assumption made by the size–reactivity continuum hypothesis that high molecular weight (〉 1 kDa) DOM (HMWDOM) represents a diagenetic intermediate between large labile material and small recalcitrant compounds. Size-fractions of HMWDOM were collected using size-exclusion chromatography, and the changes in MW and chemical composition of the fractions were studied using diffusion-ordered spectroscopy. The size fraction carbon isotopic values were correlated with the proportion of humic substances in the fractions. Through linear modeling, the apparent radiocarbon ages of the two major components of HMWDOM were determined to be 1-3 yrs and 2-4 kyrs, respectively. Combined with the measurements of MW distribution this work demonstrates that HMWDOM is composed of two components that have contrasting decomposition pathways in the ocean. HMWDOM cannot be treated as a single DOM pool when incorporated into models of DOM diagenesis. The 2nd project in this dissertation examines the remineralization of phosphonates, compounds with a direct C-P bond, in the lower euphotic zone using a newly developed fluorescent assay, which measures the activity of carbon-phosphorus lyase. C-P lyase activity (CLA) profiles from the North Pacific Subtropical Gyre (NPSG) showed a sharp activity maximum near the deep-chlorophyll maximum (DCM). High-resolution nutrient measurements suggest that this subsurface CLA maximum is the result of a high nitrate flux at the top of the nitracline. The composition of particulate-P through the euphotic zone was also examined. While phosphonates were not detected in suspended particles, a significant amount of aminoethylphosphonate was measured in sinking material, suggesting eukaryotic material may be an important source of phosphonates to the ocean.
    Description: The studies described in this dissertation were supported by the Simons Foundation (SCOPE award 329108 to D.M.K. and D.J.R.), the Gordon and Betty Moore Foundation (3794; D.M.K. and 6000; D.J.R.), and the National Science Foundation (NSF: OCE-1634080; D.J.R.) and I thank them for their support.
    Keywords: Dissolved organic matter ; Phosphonate ; Carbon cycle
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...