ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas  (25)
  • Elsevier Science Limited  (14)
  • INGV  (9)
  • Nature Publishing Group  (2)
  • Springer Science + Business Media
Collection
Years
  • 1
    Publication Date: 2021-01-11
    Description: The kinetics of hydrated basaltic melts erupted during the present activity at Stromboli have been studied to estimate the growth and dissolution rate of plagioclase. Specifically, a high-K basalt composition (PST-9) has been studied to investigate magma and eruption dynamics at Stromboli volcano by combining crystallization kinetics of plagioclase and CSD measurements on natural samples from literature (Armienti et al., 2007; Fornaciai et al., 2009). A series of water-saturated decompression experiments over a range of final water pressure (Pf = 75–5 MPa) at constant temperature (1075 C) show that plagioclase is systematically present from 50 to 5 MPa at water saturated conditions. Moreover, these experiments show that anorthite (An) content decreases with decreasing PH2O, reaching the same composition as the natural plagioclase in Stromboli scoria at pressure below 20 MPa and that the plagioclase crystal fraction increases as the experimental conditions tend to lower final pressure. Plagioclase growth rate (GL) is observed to increase with undercooling for the Pf investigated during decompression experiments, except for the 75 MPa Pf serie that only has two samples with the presence of plagioclase crystals. The values of GL vary from 10 7 to 10 8 cm/s for Pf from 75 to 25 MPa, while at Pf from 10 to 5 MPa growth rates are approximately of 10 6 cm/s. A series of dissolution experiments at atmospheric pressure and over a range of temperature has been done for plagioclase (T range of 1220–1240 C). Dissolution rate (G-) for plagioclase (10 7 cm/s) tends to be slightly higher at higher temperature in the range of 1220–1240 C and appears to be time independent for the experimental durations investigated (10–30 h). These trends could be related to development of a diffusion-limited boundary layer adjacent to the dissolving crystal. By comparison of the experimental data on plagioclase composition, growth rates and dissolution in Stromboli basalt, it is possible to place the reservoir of the crystal-rich magma in the upper part (from 400 m to the surface) of the volcanic conduit. Kinetic data of the plagioclase, the most important phase of the shallow magmatic system of Stromboli, show that the magmatic processes are quite dynamic and in a relatively short time (hours or several days) the system can change considerably. Furthermore, the results from this work combined with observations on natural samples help to improve our knowledge of the magma plumbing system, of interactions between resident magma and new magmas, the dynamics of volcanic activity of Stromboli, and the time scales of magmatic processes that change in a few hours to 1 month.
    Description: Published
    Description: 135-151
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Experimental petrology ; Basalts ; magma Kinetics ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-25
    Description: In this paper, the relationship between the dike-forming magmatic intrusions and the faulting process at Mount Etna is investigated in terms of Coulomb stress changes. As case study, a complete time-dependent 3-D finite element model for the 2002-2003 eruption at Mount Etna is presented. In the model, which takes into account the topography, medium heterogeneities and principal fault systems in a viscoelastic/plastic rheology, we sequentially activated three dike-forming processes and looked at the induced temporal evolution of the Coulomb stress changes, during the co-intrusive and post-intrusive periods, on Pernicana and Santa Venerina faults. We investigated where and when fault slips were encouraged or not, and consequently how earthquakes may have been triggered. Results show positive Coulomb stress changes for the Pernicana Fault in accordance to the time, location and depth of the 27th October 2002 Pernicana earthquake (Md = 3.5). The amount of Coulomb stress changes in the area of Santa Venerina Fault, as induced by dike-forming intrusions only, is instead almost negligible and, probably, not sufficient to trigger the 29th October Santa Venerina earthquake (Md = 4.4), occurred two days after the start of the eruption. The necessary Coulomb stress change value to trigger this earthquake is instead reached if we consider it as induced by the 27th October Pernicana biggest earthquake, combined with the dike-induced stresses.
    Description: MED-SUV FP7 Project (Grant number 308665)
    Description: Published
    Description: 185-196
    Description: 4V. Dinamica dei processi pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Coulomb stress changes ; Finite Element Model ; Viscoelasticity ; Earthquakes ; Mount Etna ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-01
    Description: Strombolian activity is common in low-viscosity volcanism. It is characterised by quasi-periodic, short-lived explosions, which, whilst typically weak, may vary greatly in magnitude. The current paradigm for a strombolian volcanic eruption postulates a large gas bubble (slug) bursting explosively after ascending a conduit filled with low-viscosity magma. However, recent studies of pyroclast textures suggest the formation of a region of cooler, degassed, more-viscous magma at the top of the conduit is a common feature of strombolian eruptions. Following the hypothesis that such a rheological impedance could act as a ‘viscous plug’, which modifies and complicates gas escape processes, we conduct the first experimental investigation of this scenario. We find that: 1) the presence of a viscous plug enhances slug burst vigour; 2) experiments that include a viscous plug reproduce, and offer an explanation for, key phenomena observed in natural strombolian eruptions; 3) the presence and extent of the plug must be considered for the interpretation of infrasonic measurements of strombolian eruptions. Our scaled analogue experiments show that, as the gas slug expands on ascent, it forces the underlying low-viscosity liquid into the plug, creating a low-viscosity channel within a high-viscosity annulus. The slug's diameter and ascent rate change as it enters the channel, generating instabilities and increasing slug overpressure. When the slug reaches the surface, a more energetic burst process is observed than would be the case for a slug rising through the low-viscosity liquid alone. Fluid-dynamic instabilities cause low and high viscosity magma analogues to intermingle, and cause the burst to become pulsatory. The observed phenomena are reproduced by numerical fluid dynamic simulations at the volcanic scale, and provide a plausible explanation for pulsations, and the ejection of mingled pyroclasts, observed at Stromboli and elsewhere.
    Description: European Union’s Seventh Framework Programme (FP7/2007–2013) project NEMOH, REA grant agreement No. 289976
    Description: Published
    Description: 210-218
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: analogue modeling ; strombolian explosions ; plugged vents ; volcano acoustic ; volcano infrasonic ; slug bursting ; Taylor bubble ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Herein we report on the chemical and isotopic (C, H, O, and He) compositions of the fluids from La Fossa crater fumaroles of Vulcano from 1999 to 2010. Consistent with records obtained since the end of the 1980s, our data show that the geochemical features of the fumarole system have experienced several episodes of remarkable change, each lasting no more than a few months. Typical signatures of these short-term anomalies are large increments in CO2, N2, and He concentrations, coupled to increased 13C/12C isotopic ratios, but their meaning remains widely debated. Within a model of fumarolic fluids based on mixing between hydrothermal and magmatic endmembers, we have developed a novel approach to constrain chemical (He/ CO2 and N2/He) and isotopic (13C/12C, D/H, and 3He/4He) ratios of the magmatic endmember during the short-term anomalies. Although much of the geochemical variability in fumaroles results from changes in mixing proportions, the magmatic fluid unquestionably shows significant variations in time. The magmatic He/CO2, N2/He, 13C/12C, and 3He/4He values throughout 1988–1996 differed from those feeding the anomaly at the end of 2004. Early clues of the new magmatic fluid appeared in 1998–1999, far from any short-term anomaly, whereas new and old magmatic fluids coexisted after 2004. We quantitatively prove that the detected geochemical changes are consistent with the degassing path of a magma having a latitic composition, and suggest the presence of two magma ponding levels at slightly different pressures, where bubble–melt decoupling can occur. The different He-isotope compositions at these levels suggest low hydraulic connectivity typical of a complex reservoir with dike and sill structures. In this framework, the short-term geochemical anomalies are probably due to gas accumulation at the top of magma bodies followed by massive escape, or activation of new degassing levels in the reservoir, for which the stress field almost certainly plays a key role. Such a scenario explains the observed increases in both fumarole output and shallow high-frequency seismicity (due to increased pore pressure) during the anomalies, while being consistent with the concomitant absence of any deep seismicity or ground deformation, eventually related to magma movement.
    Description: Published
    Description: 158-178
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: fumarole geochemistry ; magma degassing ; thermodynamic modeling ; noble gas geochemistry ; carbon isotopes ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: In this paper, we describe the 1809 eruption of Mt. Etna, Italy, which represents one historical rare case in which it is possible to observe details of the internal structure of the feeder system. This is possible thanks to the presence of two large pit craters located in the middle of the eruptive fracture field that allow studying a section of the shallow feeder system. Along the walls of one of these craters, we analysed well-exposed cross sections of the uppermost 15–20 m of the feeder system and related volcanic products. Here, we describe the structure, morphology and lithology of this portion of the 1809 feeder system, including the host rock which conditioned the propagation of the dyke, and compare the results with other recent eruptions. Finally, we propose the dynamic model of the magma behaviour inside a laterally-propagating feeder dyke, demonstrating how this dynamic triggered important changes in the eruptive style (from effusive/Strombolian to phreatomagmatic) during the same eruption. Our results are also useful for hazard assessment related to the development of flank eruptions, potentially the most hazardous type of eruption from basaltic volcanoes in densely urbanized areas, such as Mt. Etna.
    Description: Published
    Description: 1-11
    Description: 2T. Tettonica attiva
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: N/A or not JCR
    Description: open
    Keywords: feeder dyke ; basaltic volcanoes ; flank eruptions ; Etna ; volcanic hazards ; sill ; volcanic rift ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Elsevier Science Limited
    Publication Date: 2017-04-04
    Description: Etna poses risks to inhabited areas with its frequent effusive eruptions. During the 1989 and 1991 eruptions the Italian Department of Civil Protection diverted the lava from its natural path into an artificial channel, reducing the risk of lava inundation. The intervention resulted in the creation of a bifurcation between the natural and the artificial channels. In this paper magma dynamics in the bifurcation is investigated by solving the equations of mass and momentum balance with a simplified two-dimensional geometry, describing magma as an homogeneous, isothermal incompressible fluid with Newtonian rheology. Results show the important role played by the slope of the artificial channel and the effect of the width of the artificial mouth on the efficiency of the diversion.
    Description: Published
    Description: 953-956
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: lava flow ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-11-04
    Description: We present an empirical model of sulphur solubility that allows us to calculate f S2 if P, T, fO2 and the melt composition, including H2O and S, are known. The model is calibrated against three main experimental data bases consisting in both dry and hydrous silicate melts. Its prime goal is to calculate the f S2 of hydrous basalts that currently lack experimental constraints of their sulphur solubility behaviour. Application of the model to Stromboli, Vesuvius, Vulcano and Etna eruptive products shows that the primitive magmas found at these volcanoes record f S2 in the range 0.1-1 bar. In contrast, at all volcanoes the magmatic evolution is marked by dramatic variations in f S2 that spreads over up to 9 orders of magnitude. The f S2 can either increase during differentiation or decrease during decompression to shallow reservoirs, and seems to be related to closed versus open conduit conditions, respectively. The calculated f S2 shows that the Italian magmas are undersaturated in a FeS melt, except during closed conduit conditions, in which case differentiation may eventually reach conditions of sulphide melt saturation. The knowledge of f S2, fO2 and fH2O allows us to calculate the fluid phase composition coexisting with magmas at depth in the C-O-H-S system. Calculated fluids show a wide range in composition, with CO2 mole fractions of up to 0.97. Except at shallow levels, the fluid phase is generally dominated by CO2 and H2O species, the mole fractions of SO2 and H2S rarely exceeding 0.05 each. The comparison between calculated fluid compositions and volcanic gases shows that such an approach should provide constraints on both the depth and mode of degassing, as well as on the amount of free fluid in magma reservoirs. Under the assumption of a single step separation of the gas phase in a closed-system condition, the application to Stromboli and Etna suggests that the main reservoirs feeding the eruptions and persistent volcanic plumes at these volcanoes might contain as much as 5 wt% of a free fluid phase. Consideration of the magma budget needed to balance the amounts of volatiles emitted in the light of these results shows that the amount of nonerupted magma could be overestimated by as much as one order of magnitude.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: sulphur ; hydrous basalts ; volcanic gas ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 886598 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-11-04
    Description: A compendium of diffusion measurements and their Arrhenius equations for water, carbon dioxide, sulfur, fluorine, and chlorine in silicate melts similar in composition to natural igneous rocks is presented. Water diffusion in silicic melts is well studied and understood, however little data exists for melts of intermediate to basic compositions. The data demonstrate that both the water concentration and the anhydrous melt composition affect the diffusion coefficient of water. Carbon dioxide diffusion appears only weakly dependent, at most, on the volatilefree melt composition and no effect of carbon dioxide concentration has been observed, although few experiments have been performed. Based upon one study, the addition of water to rhyolitic melts increases carbon dioxide diffusion by orders of magnitude to values similar to that of 6 wt% water. Sulfur diffusion in intermediate to silicic melts depends upon the anhydrous melt composition and the water concentration. In water-bearing silicic melts sulfur diffuses 2 to 3 orders of magnitude slower than water. Chlorine diffusion is affected by both water concentration and anhydrous melt composition; its values are typically between those of water and sulfur. Information on fluorine diffusion is rare, but the volatile-free melt composition exerts a strong control on its diffusion. At the present time the diffusion of water, carbon dioxide, sulfur and chlorine can be estimated in silicic melts at magmatic temperatures. The diffusion of water and carbon dioxide in basic to intermediate melts is only known at a limited set of temperatures and compositions. The diffusion data for rhyolitic melts at 800°C together with a standard model for the enrichment of incompatible elements in front of growing crystals demonstrate that rapid crystal growth, greater than 10-10 ms-1, can significantly increase the volatile concentrations at the crystal-melt interface and that any of that melt trapped by the formation of melt inclusions may not be representative of the bulk melt. However, basaltic melt inclusions trapped at 1300°C are more likely to contain bulk melt concentrations of water and carbon dioxide.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: diffusion ; silicate melts ; volatiles ; water ; carbon dioxide ; sulfur ; fluorine ; igneous processes ; chlorine ; melt inclusion ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1827621 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-11-04
    Description: Volatile components in magma strongly influence many physical properties of melts and minerals. The temperature resolved degassing analysis of volcanic crystalline and vitreous rocks gives detailed information about volatile compounds in the melt. Aspecial high-temperature mass-spectrometry device in combination with a thermo-balance allows a quantitative determination of different volatile species. It enables a differentiation between the primary gas content in the magma and the gas released from decomposition of secondary alteration products. The gas release profiles give the following indications: i) during the littoral explosions of Pahoehoe lava the content of volatiles is not changed by interaction with air or sea water; ii) the degassing profiles of vitreous black sand verify the primary content of volatiles in the erupted melt, only CO2 was detected; iii) the oxygen release profile gives significant indications for oxygen undersaturation of the erupted magma; iv) remelting of black sand in air at 1450°C for 0.45 h causes an oxygen saturation of the basaltic melt; v) remelting of black sand in argon atmosphere confirms the oxygen undersaturation of the melt; vi) remelting of black sand-black shale mixtures affects a significant change in the degassing profiles, especially in CO2-release. With the first investigations we can demonstrate that gas release curves of volcanic rocks are qualified for a) detection of the primary gas content of erupted magma; b) detection of alteration processes of the igneous glass; c) detection of contamination of the magma with adjacent rocks.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: volatiles ; magmatic rocks ; basaltic glass ; degassing ; Hawaiian lava ; remelting ; blacksand ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1763865 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-11-04
    Description: Quartz-rich xenoliths in lavas (basalts to andesites; 90-30 ka) from Alicudi contain abundant melt and fluid inclusions. Two generations of CO2-rich fluid inclusions are present in quartz-rich xenolith grains: early (Type I) inclusions related to partial melting of the host xenoliths, and late Type II inclusions related to the fluid trapping during xenolith ascent. Homogenisation temperatures of fluid inclusions correspond to two density intervals: 0.93-0.68 g/cm3 (Type I) and 0.47-0.26 g/cm3 (Type II). Early Type I fluid inclusions indicate trapping pressures around 6 kbar, which are representative for the levels of partial melting of crustal rocks and xenolith formation. Late Type II fluid inclusions show lower trapping pressures, between 1.7 kbar and 0.2 kbar, indicative for shallow magma rest and accumulation during ascent to the surface. Data suggest the presence of two magma reservoirs: the first is located at lower crustal depths (about 24 km), site of fractional crystallization, mixing with source derived magma, and various degrees of crustal assimilation. The second magma reservoir is located at shallow crustal depths (about 6 km), the site where magma rested for a short time before erupting.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: Aeolian Islands ; fluid inclusions ; crustal xenoliths ; homogenisation temperature ; magma plumbing system ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1924338 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...