ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (103)
  • In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers
  • Vereshchagin Long Cores Expedition 2001
  • GFZ Data Services  (94)
  • Deutsches GeoForschungsZentrum GFZ  (9)
  • 1
    Publication Date: 2021-08-16
    Description: Abstract
    Description: C/N mass ratios remain constant throughout MIS 3 and into MIS 2, with values between 6.3 and 8.9, indicating no significant terrestrial input of organic matter (Fig. 3). Low %TOC values during the interstadial increase from 0.4 to 0.7 between 57.8 and 43.7 kyr BP with a concurrent gradual increase in δ13C(organic) amid oscillations between −23.2‰ and −26.1‰ (Fig. 3). %TOC falls to 0.4 between 40.9 and 39.4 kyr BP whereas δ13C(organic) remains high at c. 24‰ with a peak value of −23.6‰ at 39.4 kyr BP. The subsequent two-stage increase in %TOC from 39 to 37.9 kyr BP and between 37.3 and 36.9 kyr BP is marked by a period of δ13C(organic) lowering to c. −26.6‰ before δ13C(organic) increases after 37.9 kyr BP to −24.8‰, values comparable to those prior to the %TOC decline at 40.9 kyr BP.
    Keywords: Vereshchagin Long Cores Expedition 2001 ; R/V Vereshchagin ; δ13C ; age (calendar years) ; AMS ; calculation ; Carbon/Nitrogen ratio ; correlation of paleointensity records ; total organic carbon ; AMS
    Language: English
    Type: Dataset , Dataset
    Format: 400 Datapoints
    Format: text/tab-separated-values
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-15
    Description: Abstract
    Description: Following a sequence of seismic events detected by the National Geographic Institute (IGN Spain), on 13.09.2021 the new volcano Cumbre Vieja initiated an eruption, located on the mid-western flank at a location just to the north of the 1949 eruption site. The eruption fed a lava flow that buried already some hundreds of houses, with a high economic estimated loss. Previous studies have shown that La Palma was the source of 3 or 4 large sector collapses associated with avalanches under see and tsunami generation. This volcanic activity is accompanied with an increased seismic activity. The GFZ contributes to the monitoring of the seismic activity by sending experts in the frame of a Hazard and Risk Team (HART). Our partner is the National Geographic Institute. Besides tiltmeters, a temporary 4 station seismic network with TrilliumCompact 20 sec posthole seismometers, D-Cube digitisers (100 sample/sec) and C-Cubes LTE communication for real-time data transmission is being deployed near the Cumbre Vieja volcano, increasing the station density of the IGN network. Data access is being restricted for some time.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Other , Seismic Network
    Format: ~100G
    Format: SEED data
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-12-03
    Description: Abstract
    Description: Hekla is one of the most active and dangerous volcanoes in Iceland presenting a high hazard to air travel and a growing tourist population. It is hence important to monitor its seismic activity in real-time. However, until now the pre-eruption warning time is only around one hour. A temporary seismic network deployed by us around Hekla summit in 2012 recorded unexpected background micro-seismicity (Eibl et al., 2014). Seismic monitoring directly on the edifice could provide a possible means to early-warning if micro-seismicity on Hekla increases prior to an eruption. In addition, the monitoring of a fissure eruption close up is expected to better understand how it initiates in detail. This prompted the installation of the Hekla Real-Time Seismic Network (HERSK) in 2018 (Möllhoff et al., 2018a/b). We experienced logistical difficulties especially in winter months, mainly in relation to power provision. In this project we build on the first phase of HERSK to (1) test novel ways of powering stations that transmit real-time data in very harsh environments and (2) to work towards a real-time event detection and location system dedicated to seismic activity at Hekla volcano. The development of the real-time system necessitates the derivation of a velocity model which we derive by inverting observed microseismicty data. This opens the way to image the internal structure of Hekla volcano. Waveform data are available from the GEOFON data centre, under network code XE and embargoed until Jan 2025.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Other , Seismic Network
    Format: ~8GB
    Format: SEED data
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2022-01-25
    Description: Abstract
    Description: A network of 400 continuously running, digital, short-period seismic stations was deployed for a time period of approximately 2 weeks in an area of ~1 x 1.7 km in the Geyer region (Saxony, Germany). The network is part of a feasibility study to check whether and to which extent passive seismic methods, i.e. ambient noise techniques with a large number of stations (LARGE-N) can be used in a mineral exploration context. The project is attached to the INFACT project („Innovative, Non-invasive and Fully Acceptable Exploration Technologies“) funded by the European Union’s Horizon 2020 programme. At the same time it serves as a first field test for newly acquired LARGE-N instrumentation of the GIPP instrument pool.Waveform data are available from the GEOFON data centre, under network code XF.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; passive seismics ; mineral exploration ; ambient noise ; LARGE-N ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Other , Seismic Network
    Format: ~450G
    Format: SEED data
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-04-06
    Description: Abstract
    Description: Starting in 2016, the Taroko Earth Surface Observatory (TESO), a catchment-wide geomorphic observatory was set up in the Liwu catchment in the Taroko National Park in Taiwan. The set up consists of two basic station types: combined seismic and weather stations, featuring a broadband seismometer logging and a multi-parameter weather sensor, and hydrometric stations, the instrumentation of which are specific at each location. Seismic data hosted by the GEOFON database is openly accessible in real time. Waveform data are available from the GEOFON data centre, under network code TQ.
    Keywords: EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Other , Seismic Network
    Format: 〉1T
    Format: SEED data
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-03
    Description: Abstract
    Description: "2-year seismological experiment near Fagradalsfjall, Reykjanes peninsula in 2021/22" is a two-year seismological experiment realized near the eruptive site at Fagradalsfjall on the Reykjanes peninsula, Iceland, by Eva Eibl (University of Potsdam) in collaboration with Gylfi P. Hersir, Egill Á. Gudnason and Friðgeir Pétursson from ISOR Iceland. From March to September 2021 an effusive, basaltic eruption happened in Geldingadalir near mount Fagradalsfjall on the Reykjanes peninsula. The aim of the seismic experiment was to monitor volcano-seismic signals such as LP events, VT events and tremor, before, during and after the eruption from 14 March 2021 to August 2022. We used two broadband seismometers (Nanometrics Trillium Compact 120 s) and two rotational sensors (iXblue blueSeis-3A) and stored the data on DataCubes and CommunicationCubes, respectively. Sensors were until mid-June installed on the surface and shielded from wind using a bucket. From mid-June they were buried 40cm deep in the ground at about 2 km from the eruptive vent. At any given time, at least one station recorded the seismic signals caused by the eruption. Waveform data are available from the GEOFON data centre, under network code 9F.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Other , Seismic Network
    Format: ~600G
    Format: SEED data
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-13
    Description: Abstract
    Description: Down-core variations of the high-resolution magnetic susceptibility (0.1 cm steps)have been obtained for kasten and pilot cores from sites CON01-603 and CON01-605. This allowed the transfer of AMS 14C dating performed on kasten cores to the performed on kasten cores to the pilot cores subjected to paleomagnetic investigations. Note the discrepancies in the magnetic susceptibility curves from the pilot core from site CON 01-605 (Vydrino Shoulder) measured in 2001 and 2003, respectively (right). Several large peaks visible in the first measurement from 2001 (dashed lines) disappeared after a 2-year-long storage. This is a first hint for the presence the ferromagnetic, chemically unstable greigite.
    Keywords: Vereshchagin Long Cores Expedition 2001 ; R/V Vereshchagin ; magnetic susceptibility ; loop sensor
    Language: English
    Type: Dataset , Dataset
    Format: 9666 Datapoints
    Format: text/tab-separated-values
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-06-21
    Description: Abstract
    Description: “1-month seismological experiment on Etna, Italy in 2019" is a 1-month seismological experi-ment realized near the Pizzi Deneri Observatory on Etna, Italy, by Eva Eibl and Daniel Vollmer (University of Potsdam) in collaboration with Philippe Jousset from GFZ Potsdam Germany and Gilda Currenti and Graziano Larocca from INGV-OE, Italy. From August to September 2019, we recorded the volcano-seismic events accompanying the volcanic activity using a rotational sensor and a co-located seismometer. The aim of the seismological experiment was to study LP events, VT events and tremor. We used a 3-component broadband seismometer (Nanometrics Trillium Compact 120 s) and a 3-component rotational sensor (iXblue blueSeis-3A) and stored the data on a DataCube and CommunicationCube, respectively. Sensors were installed on the same 35 * 35 * 3 cm3 granitic base plate at about 40 cm depth enclosed by backfilled pyroclastic material to avoid wind noise. The instruments recorded at 200 Hz sampling rate and were located about 2 km from the craters on Etna. The setup was powered using 3 solar panels of 140W each and three batteries of 75Ah each. We oriented the rotational sensor and seismometer using a Quadrans fiber-optical gyrocompass. The Quadrans is not affected by magnetic minerals in the ground and our sensors are hence properly aligned to geographic north. We converted the seismometer data to MSEED using Pyrocko’s Jackseis program and created a catalogs of LP events and VT events that were further investigated in Eibl et al. 2022. Waveform data are available from the GEOFON data centre, under network code ZR.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Rotational seismometer ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Other , Seismic Network
    Format: ~60G
    Format: SEED data
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-20
    Description: Abstract
    Description: KivuSNet represents the first dense broadband seismic network installed in the Kivu Rift region, which is located in the bordering region of the Democratic Republic of Congo and Rwanda. Here the active volcanoes Nyamulagira (the most active in Africa) and Nyiragongo (host to the largest persistent lava lake on Earth) threaten the city of Goma and neighbouring agglomerations, and destructive earthquakes can also affect the region. The deployement started with the first stations in 2012/2013 and since October 2015, 13 stations are operated with real-time data transmission. The development of KivuSNet has been carried out in the framework of several research projects and is in particular associated with the project REmote Sensing and In Situ detection and Tracking of geohazards (RESIST), funded by the Belgian Science Policy and the National Research Fund of Luxembourg. KivuSNet aims at opening a new window for the seismological knowledge in this highly active rifting region, allowing for unprecedented insights into tectonic and volcanic seismicity, tremor patterns and Earth structure as well as for sustainable real-time monitoring of the volcanoes in the area. Together with the often co-located KivuGNet geodetic stations, KivuSNet closes a dramatic observational gap in this region. Waveform data is available from the GEOFON data centre, under network code KV. Embargo policy: - All data before 1 August 2019 remain under embargo until 1 August 2024; - Data acquired from 1 August 2019 onwards are opened 3 years after their acquisition, progressively in 1-months batches (e.g. Data from August 2019 would be opened on 1 September 2022, data from September 2019 would be opened on 1 October 2022 etc.) - For any access request to data that are still under embargo, written permission of the RESIST project partners is needed.
    Keywords: Seismic monitoring ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~2.5T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-08
    Description: Abstract
    Description: The network consists of 5 stations covering the volcanic cone flanks. These stations were operative during one year with the final purpose of detect likely changes in the seismic activity of Lascar after the 2014 Iquique earthquake. Waveform data are available from the GEOFON data centre, under network code 8E, and are embargoed until 001 2019.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Monitoring system ; Seismological stations ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: Greater than 40 GB
    Format: SEED data
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...