ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (35,550)
  • Maps
  • Copernicus  (35,550)
  • Geography  (33,930)
  • Electrical Engineering, Measurement and Control Technology  (1,620)
Collection
Years
Journal
Topic
  • 1
    Publication Date: 2020-08-26
    Description: The evaluation of potential landslides in mountain areas is a very complex process. Currently, event understanding is scarce due to information limitations. Identifying the whole chain of events is not a straightforward task, and the impacts of mass-wasting processes depend on the conditions downstream of the origin. In this paper, we present an example that illustrates the complexities in the evaluation of the chain of events that may lead to a natural disaster. On 16 December 2017, a landslide occurred in the Yelcho mountain range (southern Chile). In that event, 7 million m3 of rocks and soil fell on the Yelcho glacier, depositing 2 million m3 on the glacier terminal, and the rest continued downstream, triggering a mudflow that hit Villa Santa Lucía in Chilean Patagonia and killing 22 people. The complex event was anticipated in the region by the National Geological and Mining Survey (Sernageomin in Spanish). However, the effects of the terrain characteristics along the run-out area were more significant than anticipated. In this work, we evaluate the conditions that enabled the mudflow that hit Villa Santa Lucía. We used the information generated by Sernageomin's professionals after the mudflow. We carried out geotechnical tests to characterize the soil. We simulated the mudflow using two hydrodynamic programs (r.avaflow and Flo-2D) that can handle the rheology of the water–soil mixture. Our results indicate that the soil is classified as volcanic pumices. This type of soil can be susceptible to the collapse of the structure when subjected to shearing (molding), flowing as a viscous liquid. From the numerical modeling, we concluded that r.avaflow performs better than Flo-2D. The mudflow was satisfactorily simulated using a water content in the mixture ranging from 30 % to 40 %, which would have required a source of about 3 million m3 of water. Coupling the simulations and the soil tests that we performed, we estimated that in the area scoured by the mudflow, there were probably around 2 800 000 m3 of water within the soil. Therefore, the conditions of the valley were crucial to enhancing the impacts of the landslide. This result is relevant because it highlights the importance of evaluating the complete chain of events to map hazards. We suggest that in future hazard mapping, geotechnical studies in combination with hydrodynamic simulation should be included, in particular when human lives are at risk.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-27
    Description: Evapotranspiration (ET) from tropical forests serves as a critical moisture source for regional and global climate cycles. However, the magnitude, seasonality, and interannual variability of ET in the Congo Basin remain poorly constrained due to a scarcity of direct observations, despite the Congo being the second-largest river basin in the world and containing a vast region of tropical forest. In this study, we applied a water balance model to an array of remotely sensed and in situ datasets to produce monthly, basin-wide ET estimates spanning April 2002 to November 2016. Data sources include water storage changes estimated from the Gravity Recovery and Climate Experiment (GRACE) satellites, in situ measurements of river discharge, and precipitation from several remotely sensed and gauge-based sources. An optimal precipitation dataset was determined as a weighted average of interpolated data by Nicholson et al. (2018), Climate Hazards InfraRed Precipitation with Station data version 2 (CHIRPS2) , and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks–Climate Data Record product (PERSIANN-CDR), with the relative weights based on the error magnitudes of each dataset as determined by triple collocation. The resulting water-balance-derived ET (ETwb) features a long-term average that is consistent with previous studies (117.2±3.5 cm yr−1) but displays greater seasonal and interannual variability than seven global ET products. The seasonal cycle of ETwb generally tracks that of precipitation over the basin, with the exception that ETwb is greater in March–April–May (MAM) than in the relatively wetter September–October–November (SON) periods. This pattern appears to be driven by seasonal variations in the diffuse photosynthetically active radiation (PAR) fraction, net radiation (Rn), and soil water availability. From 2002 to 2016, Rn, PAR, and vapor-pressure deficit (VPD) all increased significantly within the Congo Basin; however, no corresponding trend occurred in ETwb. We hypothesize that the stability of ETwb over the study period despite sunnier and less humid conditions may be due to increasing atmospheric CO2 concentrations that offset the impacts of rising VPD and irradiance on stomatal water use efficiency (WUE).
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-28
    Description: Optimum management of irrigated crops in regions with shallow saline groundwater requires a careful balance between application of irrigation water and upward movement of salinity from the groundwater. Few field-validated surrogate models are available to aid in the management of irrigation water under shallow groundwater conditions. The objective of this research is to develop a model that can aid in the management using a minimum of input data that are field validated. In this paper a 2-year field experiment was carried out in the Hetao irrigation district in Inner Mongolia, China, and a physically based integrated surrogate model for arid irrigated areas with shallow groundwater was developed and validated with the collected field data. The integrated model that links crop growth with available water and salinity in the vadose zone is called Evaluation of the Performance of Irrigated Crops and Soils (EPICS). EPICS recognizes that field capacity is reached when the matric potential is equal to the height above the groundwater table and thus not by a limiting hydraulic conductivity. In the field experiment, soil moisture contents and soil salt conductivity at five depths in the top 100 cm, groundwater depth, crop height, and leaf area index were measured in 2017 and 2018. The field results were used for calibration and validation of EPICS. Simulated and observed data fitted generally well during both calibration and validation. The EPICS model that can predict crop growth, soil water, groundwater depth, and soil salinity can aid in optimizing water management in irrigation districts with shallow aquifers.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-08-28
    Description: In the framework of the EU Copernicus programme, the European Centre for Medium-Range Weather Forecasts (ECMWF) on behalf of the Joint Research Centre (JRC) is forecasting daily fire weather indices using its medium-range ensemble prediction system. The use of weather forecasts in place of local observations can extend early warnings by up to 1–2 weeks, allowing for greater proactive coordination of resource-sharing and mobilization within and across countries. Using 1 year of pre-operational service in 2017 and the Fire Weather Index (FWI), here we assess the capability of the system globally and analyse in detail three major events in Chile, Portugal and California. The analysis shows that the skill provided by the ensemble forecast system extends to more than 10 d when compared to the use of mean climate, making a case for extending the forecast range to the sub-seasonal to seasonal timescale. However, accurate FWI prediction does not translate into accuracy in the forecast of fire activity globally. Indeed, when all fires detected in 2017 are considered, including agricultural- and human-induced burning, high FWI values only occur in 50 % of the cases and are limited to the Boreal regions. Nevertheless for very large events which were driven by weather conditions, FWI forecasts provide advance warning that could be instrumental in setting up management and containment strategies.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-28
    Description: The impact of a hexamethyldisiloxane (HMDSO) treatment on the response of doped SnO2 sensors is investigated for acetone, carbon monoxide and hydrogen. The sensor was operated in temperature cycles based on the DSR concept (differential surface reduction). According to this concept, the rate constants for the reduction and oxidation of the surface after fast temperature changes can be evaluated and used for quantification of reducing gases as well as quantification and compensation of sensor poisoning by siloxanes, which is shown in this work. Increasing HMDSO exposure reduces the rate constants and therefore the sensitivity of the sensor more and more for all processes. On the other hand, while the rate constants for acetone and carbon monoxide are reduced nearly to zero already for short treatments, the hydrogen sensitivity remains fairly stable, which greatly increases the selectivity. During repeated HMDSO treatment the quasistatic sensitivity, i.e. equilibrium sensitivity at one point during the temperature cycle, rises at first for all gases but then drops rapidly for acetone and carbon monoxide, which can also be explained by reduced rate constants for oxygen chemisorption on the sensor surface when considering the generation of surface charge.
    Print ISSN: 2194-8771
    Electronic ISSN: 2194-878X
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-07-02
    Description: In the past decades, severe heat waves have frequently occurred in many parts of the world. These conspicuous heat waves exerted terrible influences on human health, society, the economy, agriculture, the ecosystem and so on. Based on observed daily temperatures in China, an integrated index of heat waves and extreme-temperature days was established involving the frequency, duration, intensity and scale of these events across large cities in China. Heat waves and extreme-temperature days showed an increasing trend in most regions except northwest China from 1955 to 2014. After the late 1980s, the increasing trend was more obvious than the decades before. The cities in the middle and lower reaches of the Yangtze River were threatened by the most serious heat events in the past 60 years, especially Chongqing and Changsha. Due to the subtropical monsoon climate and special terrain, Chongqing experienced the most heat events in a long period of time. In particular, there was obvious fluctuation of hot years in 31 cities, which did not continuously rise with global warming; 21 cities mainly located in the eastern and southern regions of China had an obvious rising trend; eight cities had a clear declining trend which was mainly distributed in the western and northern regions of China; and there were no extreme-temperature days in Kunming and Lhasa in the past 60 years. The study revealed an obvious differentiation of heat events for 31 cities under climate change; heat threat in most cities is increasing but declining or remaining unchanged in the other cities. The trend is likely to intensify with global warming.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-07-02
    Description: The total Antarctic sea ice extent (SIE) experiences a distinct annual cycle, peaking in September and reaching its minimum in February. In this paper we propose a mathematical and statistical decomposition of this temporal variation in SIE. Each component is interpretable and, when combined, gives a complete picture of the variation in the sea ice. We consider timescales varying from the instantaneous and not previously defined to the multi-decadal curvilinear trend, the longest. Because our representation is daily, these timescales of variability give precise information about the timing and rates of advance and retreat of the ice and may be used to diagnose physical contributors to variability in the sea ice. We define a number of annual cycles each capturing different components of variation, especially the yearly amplitude and phase that are major contributors to SIE variation. Using daily sea ice concentration data, we show that our proposed invariant annual cycle explains 29 % more of the variation in daily SIE than the traditional method. The proposed annual cycle that incorporates amplitude and phase variation explains 77 % more variation than the traditional method. The variation in phase explains more of the variability in SIE than the amplitude. Using our methodology, we show that the anomalous decay of sea ice in 2016 was associated largely with a change of phase rather than amplitude. We show that the long term trend in Antarctic sea ice extent is strongly curvilinear and the reported positive linear trend is small and dependent strongly on a positive trend that began around 2011 and continued until 2016.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-08-31
    Description: The invasion of aquifer microbial communities by aboveground microorganisms, a phenomenon known as community coalescence, is likely to be exacerbated in groundwaters fed by stormwater infiltration systems (SISs). Here, the incidence of this increased connectivity with upslope soils and impermeabilized surfaces was assessed through a meta-analysis of 16S rRNA gene libraries. Specifically, DNA sequences encoding 16S rRNA V5-V6 regions from free-living and attached aquifer bacteria (i.e., water and biofilm samples) were analysed upstream and downstream of a SIS and compared with those from bacterial communities from watershed runoffs and surface sediments from the SIS detention and infiltration basins. Significant bacterial transfers were inferred by the SourceTracker Bayesian approach, with 23 % to 57 % of the aquifer bacterial biofilms being composed of taxa from aboveground sediments and urban runoffs. Sediments from the detention basin were found more significant contributors of taxa involved in the buildup of these biofilms than soils from the infiltration basin. Inferred taxa among the coalesced biofilm community were predicted to be high in hydrocarbon degraders such as Sphingobium and Nocardia. The 16S rRNA-based bacterial community structure of the downstream-SIS aquifer waters showed lower coalescence with aboveground taxa (8 % to 38 %) than those of biofilms and higher numbers of taxa predicted to be involved in the N and S cycles. A DNA marker named tpm enabled the tracking of bacterial species from 24 genera including Pseudomonas, Aeromonas and Xanthomonas, among these communities. Several tpm sequence types were found to be shared between the aboveground and aquifer samples. Reads related to Pseudomonas were allocated to 50 species, of which 16 were found in the aquifer samples. Several of these aquifer species were found to be involved in denitrification but also hydrocarbon degradation (P. aeruginosa, P. putida and P. fluorescens). Some tpm sequence types allocated to P. umsongensis and P. chengduensis were found to be enriched among the tpm-harbouring bacteria, respectively, of the aquifer biofilms and waters. Reads related to Aeromonas were allocated to 11 species, but only those from A. caviae were recovered aboveground and in the aquifer samples. Some tpm sequence types of the X. axonopodis phytopathogen  were recorded in higher proportions among the tpm-harbouring bacteria of the aquifer waters than in the aboveground samples. A significant coalescence of microbial communities from an urban watershed with those of an aquifer was thus observed, and recent aquifer biofilms were found to be significantly colonized by runoff-opportunistic taxa able to use urban C sources from aboveground compartments.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-08-31
    Description: Landfast sea ice (fast ice) attached to Antarctic (near-)coastal elements is a critical component of the local physical and ecological systems. Through its direct coupling with the atmosphere and ocean, fast-ice properties are also a potential indicator of processes related to a changing climate. However, in situ fast-ice observations in Antarctica are extremely sparse because of logistical challenges and harsh environmental conditions. Since 2010, a monitoring program observing the seasonal evolution of fast ice in Atka Bay has been conducted as part of the Antarctic Fast Ice Network (AFIN). The bay is located on the northeastern edge of Ekström Ice Shelf in the eastern Weddell Sea, close to the German wintering station Neumayer III. A number of sampling sites have been regularly revisited each year between annual ice formation and breakup to obtain a continuous record of sea-ice and sub-ice platelet-layer thickness, as well as snow depth and freeboard across the bay. Here, we present the time series of these measurements over the last 9 years. Combining them with observations from the nearby Neumayer III meteorological observatory as well as auxiliary satellite images enables us to relate the seasonal and interannual fast-ice cycle to the factors that influence their evolution. On average, the annual consolidated fast-ice thickness at the end of the growth season is about 2 m, with a loose platelet layer of 4 m thickness beneath and 0.70 m thick snow on top. Results highlight the predominately seasonal character of the fast-ice regime in Atka Bay without a significant interannual trend in any of the observed variables over the 9-year observation period. Also, no changes are evident when comparing with sporadic measurements in the 1980s and 1990s. It is shown that strong easterly winds in the area govern the year-round snow distribution and also trigger the breakup of fast ice in the bay during summer months. Due to the substantial snow accumulation on the fast ice, a characteristic feature is frequent negative freeboard, associated flooding of the snow–ice interface, and a likely subsequent snow ice formation. The buoyant platelet layer beneath negates the snow weight to some extent, but snow thermodynamics is identified as the main driver of the energy and mass budgets for the fast-ice cover in Atka Bay. The new knowledge of the seasonal and interannual variability of fast-ice properties from the present study helps to improve our understanding of interactions between atmosphere, fast ice, ocean, and ice shelves in one of the key regions of Antarctica and calls for intensified multidisciplinary studies in this region.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-07-15
    Description: Storm tides are a major hazard for the German North Sea coasts. For coastal protection and economic activities, planning information on the probability and magnitude of extreme storm tides and their possible future changes is important. This study focuses on the most extreme events and examines whether they could have become more severe under slightly different conditions while still remaining within physical plausibility. In the face of a limited number of observational data on very severe events, an extensive set of model data is used to extract most extreme storm tide events for locations in the German Bight, in particular Borkum and the Ems estuary. The data set includes water levels and respective atmospheric conditions from a hindcast and future climate realizations without sea level rise describing today's and possible future conditions. A number of very severe events with water levels exceeding those measured near Borkum since 1906 are identified in the data set. A possible further amplification of the highest events is investigated by simulating these events for the North Sea with different phase lags between the astronomical tide given at the open model boundaries and the wind forcing. It is found that superposition of spring tide conditions, different timing of the astronomical high water and atmospheric conditions during the highest storm event would cause an enhancement of the highest water level up to about 50 cm. The water levels of the two highest events from the data set are used to analyse the effects in the Ems estuary using a high-resolution model of the German Bight. Additionally, the influences of an extreme river runoff and of sea level rise are studied. The extreme river runoff of 1200 m3 s−1 increases the highest water levels by several decimetres in the narrow upstream part of the Ems estuary. This effect diminishes downstream. The sea level rise increases the water level in the downstream part of the Ems estuary by the amount applied at the model boundary to the North Sea. In the upstream part, its influence on the water level decreases. This study may serve as a first step towards an impact assessment for severe storm tides and towards implications for coastal zone management in times of climate change.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...