ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mice, Inbred C57BL  (470)
  • History, 21st Century  (459)
  • Nature Publishing Group (NPG)  (929)
  • Copernicus
Collection
Keywords
Publisher
Years
  • 1
    Publication Date: 2010-04-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Check Hayden, Erika -- England -- Nature. 2010 Apr 1;464(7289):664-7. doi: 10.1038/464664a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20360709" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Data Mining ; Gene Expression Regulation ; Genes/genetics ; Genome, Human/*genetics ; Genomics/history/trends ; History, 20th Century ; History, 21st Century ; Human Genome Project/history ; Humans ; *Models, Biological ; Molecular Biology/*history ; Neoplasms/genetics/therapy ; RNA, Untranslated/genetics/metabolism ; Sea Urchins/embryology/genetics ; Systems Biology/*trends ; Tumor Suppressor Protein p53/chemistry/genetics/metabolism ; *Uncertainty
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-07-20
    Description: Chronic myelogenous leukaemia (CML) can progress from a slow growing chronic phase to an aggressive blast crisis phase, but the molecular basis of this transition remains poorly understood. Here we have used mouse models of CML to show that disease progression is regulated by the Musashi-Numb signalling axis. Specifically, we find that the chronic phase is marked by high levels of Numb expression whereas the blast crisis phase has low levels of Numb expression, and that ectopic expression of Numb promotes differentiation and impairs advanced-phase disease in vivo. As a possible explanation for the decreased levels of Numb in the blast crisis phase, we show that NUP98-HOXA9, an oncogene associated with blast crisis CML, can trigger expression of the RNA-binding protein Musashi2 (Msi2), which in turn represses Numb. Notably, loss of Msi2 restores Numb expression and significantly impairs the development and propagation of blast crisis CML in vitro and in vivo. Finally we show that Msi2 expression is not only highly upregulated during human CML progression but is also an early indicator of poorer prognosis. These data show that the Musashi-Numb pathway can control the differentiation of CML cells, and raise the possibility that targeting this pathway may provide a new strategy for the therapy of aggressive leukaemias.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2918284/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2918284/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ito, Takahiro -- Kwon, Hyog Young -- Zimdahl, Bryan -- Congdon, Kendra L -- Blum, Jordan -- Lento, William E -- Zhao, Chen -- Lagoo, Anand -- Gerrard, Gareth -- Foroni, Letizia -- Goldman, John -- Goh, Harriet -- Kim, Soo-Hyun -- Kim, Dong-Wook -- Chuah, Charles -- Oehler, Vivian G -- Radich, Jerald P -- Jordan, Craig T -- Reya, Tannishtha -- AI067798/AI/NIAID NIH HHS/ -- CA122206/CA/NCI NIH HHS/ -- CA140371/CA/NCI NIH HHS/ -- CA18029/CA/NCI NIH HHS/ -- DK072234/DK/NIDDK NIH HHS/ -- DK63031/DK/NIDDK NIH HHS/ -- DP1 CA174422/CA/NCI NIH HHS/ -- DP1 OD006430/OD/NIH HHS/ -- DP1 OD006430-01/OD/NIH HHS/ -- DP1 OD006430-02/OD/NIH HHS/ -- DP1OD006430/OD/NIH HHS/ -- HL097767/HL/NHLBI NIH HHS/ -- P01 CA018029/CA/NCI NIH HHS/ -- R01 CA140371/CA/NCI NIH HHS/ -- R01 DK063031/DK/NIDDK NIH HHS/ -- R01 DK063031-01/DK/NIDDK NIH HHS/ -- R01 DK063031-01S1/DK/NIDDK NIH HHS/ -- R01 DK063031-02/DK/NIDDK NIH HHS/ -- R01 DK063031-03/DK/NIDDK NIH HHS/ -- R01 DK063031-04/DK/NIDDK NIH HHS/ -- R01 DK063031-05/DK/NIDDK NIH HHS/ -- R01 DK063031-06/DK/NIDDK NIH HHS/ -- R01 DK063031-07/DK/NIDDK NIH HHS/ -- R01 DK063031-07S1/DK/NIDDK NIH HHS/ -- R01 DK063031-08/DK/NIDDK NIH HHS/ -- R01 DK072234/DK/NIDDK NIH HHS/ -- R01 DK072234-01A1/DK/NIDDK NIH HHS/ -- R01 DK072234-02/DK/NIDDK NIH HHS/ -- R01 DK072234-03/DK/NIDDK NIH HHS/ -- R01 DK072234-04/DK/NIDDK NIH HHS/ -- R01 HL097767/HL/NHLBI NIH HHS/ -- R01 HL097767-01/HL/NHLBI NIH HHS/ -- R01 HL097767-02/HL/NHLBI NIH HHS/ -- T32 GM007184-33/GM/NIGMS NIH HHS/ -- U19 AI067798/AI/NIAID NIH HHS/ -- U19 AI067798-010006/AI/NIAID NIH HHS/ -- U19 AI067798-020006/AI/NIAID NIH HHS/ -- U19 AI067798-030006/AI/NIAID NIH HHS/ -- U19 AI067798-040006/AI/NIAID NIH HHS/ -- U19 AI067798-050006/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Aug 5;466(7307):765-8. doi: 10.1038/nature09171. Epub 2010 Jul 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20639863" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blast Crisis/genetics/metabolism/pathology ; *Cell Differentiation/genetics ; Disease Progression ; Fusion Proteins, bcr-abl/genetics/metabolism ; Gene Expression Regulation, Neoplastic ; Homeodomain Proteins/genetics/metabolism ; Humans ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics/*metabolism/*pathology ; Membrane Proteins/biosynthesis/genetics/metabolism ; Mice ; Mice, Inbred C57BL ; Nerve Tissue Proteins/biosynthesis/genetics/metabolism ; Nuclear Pore Complex Proteins/genetics/metabolism ; Oncogene Proteins, Fusion/genetics/metabolism ; Prognosis ; RNA-Binding Proteins/biosynthesis/genetics/*metabolism ; Receptor, Notch1/metabolism ; Signal Transduction ; Tumor Suppressor Protein p53/metabolism ; Up-Regulation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-05-14
    Description: The main reason why tumours are not controlled by the immune system is that, unlike pathogens, they do not express potent tumour rejection antigens (TRAs). Tumour vaccination aims at stimulating a systemic immune response targeted to, mostly weak, antigens expressed in the disseminated tumour lesions. Main challenges in developing effective vaccination protocols are the identification of potent and broadly expressed TRAs and effective adjuvants to stimulate a robust and durable immune response. Here we describe an alternative approach in which the expression of new, and thereby potent, antigens are induced in tumour cells by inhibiting nonsense-mediated messenger RNA decay (NMD). Small interfering RNA (siRNA)-mediated inhibition of NMD in tumour cells led to the expression of new antigenic determinants and their immune-mediated rejection. In subcutaneous and metastatic tumour models, tumour-targeted delivery of NMD factor-specific siRNAs conjugated to oligonucleotide aptamer ligands led to significant inhibition of tumour growth that was superior to that of vaccination with granulocyte-macrophage colony-stimulating factor (GM-CSF)-expressing irradiated tumour cells, and could be further enhanced by co-stimulation. Tumour-targeted NMD inhibition forms the basis of a simple, broadly useful, and clinically feasible approach to enhance the antigenicity of disseminated tumours leading to their immune recognition and rejection. The cell-free chemically synthesized oligonucleotide backbone of aptamer-siRNAs reduces the risk of immunogenicity and enhances the feasibility of generating reagents suitable for clinical use.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3107067/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3107067/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pastor, Fernando -- Kolonias, Despina -- Giangrande, Paloma H -- Gilboa, Eli -- R01 CA138503/CA/NCI NIH HHS/ -- R01 CA151857-02/CA/NCI NIH HHS/ -- England -- Nature. 2010 May 13;465(7295):227-30. doi: 10.1038/nature08999.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology & Immunology, Dodson Interdisciplinary Immunotherapy Institute, University of Miami Miller School of Medicine Miami, Florida 33134, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20463739" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Neoplasm/*genetics/*immunology ; Aptamers, Nucleotide/genetics ; Cancer Vaccines/genetics/immunology/metabolism ; Carrier Proteins/genetics ; Cell Line, Tumor ; Chickens/genetics ; Colonic Neoplasms/*genetics/*immunology/pathology ; Gene Expression Regulation, Neoplastic ; Granulocyte-Macrophage Colony-Stimulating Factor/genetics/metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mice, Nude ; Neoplasm Transplantation ; RNA Interference ; RNA Stability/*genetics ; RNA, Small Interfering/*genetics/therapeutic use ; Xenograft Model Antitumor Assays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-12-03
    Description: The capacity to fine-tune cellular bioenergetics with the demands of stem-cell maintenance and regeneration is central to normal development and ageing, and to organismal survival during periods of acute stress. How energy metabolism and stem-cell homeostatic processes are coordinated is not well understood. Lkb1 acts as an evolutionarily conserved regulator of cellular energy metabolism in eukaryotic cells and functions as the major upstream kinase to phosphorylate AMP-activated protein kinase (AMPK) and 12 other AMPK-related kinases. Whether Lkb1 regulates stem-cell maintenance remains unknown. Here we show that Lkb1 has an essential role in haematopoietic stem cell (HSC) homeostasis. We demonstrate that ablation of Lkb1 in adult mice results in severe pancytopenia and subsequent lethality. Loss of Lkb1 leads to impaired survival and escape from quiescence of HSCs, resulting in exhaustion of the HSC pool and a marked reduction of HSC repopulating potential in vivo. Lkb1 deletion has an impact on cell proliferation in HSCs, but not on more committed compartments, pointing to context-specific functions for Lkb1 in haematopoiesis. The adverse impact of Lkb1 deletion on haematopoiesis was predominantly cell-autonomous and mTOR complex 1 (mTORC1)-independent, and involves multiple mechanisms converging on mitochondrial apoptosis and possibly downregulation of PGC-1 coactivators and their transcriptional network, which have critical roles in mitochondrial biogenesis and function. Thus, Lkb1 serves as an essential regulator of HSCs and haematopoiesis, and more generally, points to the critical importance of coupling energy metabolism and stem-cell homeostasis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058342/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058342/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gan, Boyi -- Hu, Jian -- Jiang, Shan -- Liu, Yingchun -- Sahin, Ergun -- Zhuang, Li -- Fletcher-Sananikone, Eliot -- Colla, Simona -- Wang, Y Alan -- Chin, Lynda -- Depinho, Ronald A -- 01CA141508/CA/NCI NIH HHS/ -- R21 CA135057/CA/NCI NIH HHS/ -- R21 CA135057-01/CA/NCI NIH HHS/ -- R21CA135057/CA/NCI NIH HHS/ -- U01 CA141508/CA/NCI NIH HHS/ -- U01 CA141508-01/CA/NCI NIH HHS/ -- England -- Nature. 2010 Dec 2;468(7324):701-4. doi: 10.1038/nature09595.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21124456" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Cell Cycle/*physiology ; Cell Proliferation ; Cell Survival ; *Energy Metabolism ; Female ; Gene Deletion ; Hematopoiesis ; Hematopoietic Stem Cells/*cytology/*metabolism/pathology ; *Homeostasis ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mitochondria/metabolism/pathology ; Multiprotein Complexes ; Pancytopenia/genetics ; Phenotype ; Protein-Serine-Threonine Kinases/deficiency/genetics/*metabolism ; Proteins/metabolism ; Survival Analysis ; TOR Serine-Threonine Kinases ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-10-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2010 Sep 30;467(7315):499-500. doi: 10.1038/467499b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20881967" target="_blank"〉PubMed〈/a〉
    Keywords: European Union ; Financing, Organized/economics ; Germany ; History, 20th Century ; History, 21st Century ; Internationality ; Politics ; Research Support as Topic/economics/history ; Science/economics/history/*standards/*trends
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-01-19
    Description: Influenza A virus, being responsible for seasonal epidemics and reoccurring pandemics, represents a worldwide threat to public health. High mutation rates facilitate the generation of viral escape mutants, rendering vaccines and drugs directed against virus-encoded targets potentially ineffective. In contrast, targeting host cell determinants temporarily dispensable for the host but crucial for virus replication could prevent viral escape. Here we report the discovery of 287 human host cell genes influencing influenza A virus replication in a genome-wide RNA interference (RNAi) screen. Using an independent assay we confirmed 168 hits (59%) inhibiting either the endemic H1N1 (119 hits) or the current pandemic swine-origin (121 hits) influenza A virus strains, with an overlap of 60%. Notably, a subset of these common hits was also essential for replication of a highly pathogenic avian H5N1 strain. In-depth analyses of several factors provided insights into their infection stage relevance. Notably, SON DNA binding protein (SON) was found to be important for normal trafficking of influenza virions to late endosomes early in infection. We also show that a small molecule inhibitor of CDC-like kinase 1 (CLK1) reduces influenza virus replication by more than two orders of magnitude, an effect connected with impaired splicing of the viral M2 messenger RNA. Furthermore, influenza-virus-infected p27(-/-) (cyclin-dependent kinase inhibitor 1B; Cdkn1b) mice accumulated significantly lower viral titres in the lung, providing in vivo evidence for the importance of this gene. Thus, our results highlight the potency of genome-wide RNAi screening for the dissection of virus-host interactions and the identification of drug targets for a broad range of influenza viruses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karlas, Alexander -- Machuy, Nikolaus -- Shin, Yujin -- Pleissner, Klaus-Peter -- Artarini, Anita -- Heuer, Dagmar -- Becker, Daniel -- Khalil, Hany -- Ogilvie, Lesley A -- Hess, Simone -- Maurer, Andre P -- Muller, Elke -- Wolff, Thorsten -- Rudel, Thomas -- Meyer, Thomas F -- England -- Nature. 2010 Feb 11;463(7282):818-22. doi: 10.1038/nature08760. Epub 2010 Jan 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Department, Max Planck Institute for Infection Biology, Chariteplatz 1, 10117 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20081832" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Factors/genetics/metabolism ; Cell Line ; Cells, Cultured ; Chick Embryo ; Cyclin-Dependent Kinase Inhibitor p27/deficiency/genetics/metabolism ; Epithelial Cells/virology ; Genome, Human/genetics ; *Host-Pathogen Interactions/genetics/physiology ; Humans ; Influenza A Virus, H1N1 Subtype/classification/*growth & development ; Influenza, Human/*genetics/*virology ; Lung/cytology ; Mice ; Mice, Inbred C57BL ; Protein-Serine-Threonine Kinases/genetics ; Protein-Tyrosine Kinases/genetics ; *RNA Interference ; Virus Replication/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-10-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Simmons, John Galbraith -- England -- Nature. 2010 Oct 14;467(7317):S14-5. doi: 10.1038/467S14a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20944614" target="_blank"〉PubMed〈/a〉
    Keywords: Age Factors ; Blogging ; Congresses as Topic/*history/*trends ; Conservation of Natural Resources/trends ; Germany ; History, 20th Century ; History, 21st Century ; *Nobel Prize ; Nuclear Warfare ; *Research Personnel/history/trends ; Science/*history/*trends
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-08-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wadman, Meredith -- England -- Nature. 2010 Aug 12;466(7308):808-10. doi: 10.1038/466808a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20703281" target="_blank"〉PubMed〈/a〉
    Keywords: American Recovery and Reinvestment Act/economics ; Biomedical Research/economics/organization & administration/trends ; Budgets/trends ; Comparative Effectiveness Research ; History, 20th Century ; History, 21st Century ; Human Genome Project/history ; Humans ; National Institutes of Health (U.S.)/*economics/*organization & ; administration/trends ; Religion and Science ; Translational Medical Research ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-08-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mastrandrea, Michael D -- England -- Nature. 2010 Aug 19;466(7309):933. doi: 10.1038/466933a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Intergovernmental Panel on Climate Change Working Group II, Stanford University, Stanford, California 94305, USA. mikemas@stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20725032" target="_blank"〉PubMed〈/a〉
    Keywords: Aerosols ; Climate Change/*history ; History, 20th Century ; History, 21st Century ; Policy Making ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-10-01
    Description: RANK ligand (RANKL), a TNF-related molecule, is essential for osteoclast formation, function and survival through interaction with its receptor RANK. Mammary glands of RANK- and RANKL-deficient mice develop normally during sexual maturation, but fail to form lobuloalveolar structures during pregnancy because of defective proliferation and increased apoptosis of mammary epithelium. It has been shown that RANKL is responsible for the major proliferative response of mouse mammary epithelium to progesterone during mammary lactational morphogenesis, and in mouse models, manipulated to induce activation of the RANK/RANKL pathway in the absence of strict hormonal control, inappropriate mammary proliferation is observed. However, there is no evidence so far of a functional contribution of RANKL to tumorigenesis. Here we show that RANK and RANKL are expressed within normal, pre-malignant and neoplastic mammary epithelium, and using complementary gain-of-function (mouse mammary tumour virus (MMTV)-RANK transgenic mice) and loss-of function (pharmacological inhibition of RANKL) approaches, define a direct contribution of this pathway in mammary tumorigenesis. Accelerated pre-neoplasias and increased mammary tumour formation were observed in MMTV-RANK transgenic mice after multiparity or treatment with carcinogen and hormone (progesterone). Reciprocally, selective pharmacological inhibition of RANKL attenuated mammary tumour development not only in hormone- and carcinogen-treated MMTV-RANK and wild-type mice, but also in the MMTV-neu transgenic spontaneous tumour model. The reduction in tumorigenesis upon RANKL inhibition was preceded by a reduction in pre-neoplasias as well as rapid and sustained reductions in hormone- and carcinogen-induced mammary epithelial proliferation and cyclin D1 levels. Collectively, our results indicate that RANKL inhibition is acting directly on hormone-induced mammary epithelium at early stages in tumorigenesis, and the permissive contribution of progesterone to increased mammary cancer incidence is due to RANKL-dependent proliferative changes in the mammary epithelium. The current study highlights a potential role for RANKL inhibition in the management of proliferative breast disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gonzalez-Suarez, Eva -- Jacob, Allison P -- Jones, Jon -- Miller, Robert -- Roudier-Meyer, Martine P -- Erwert, Ryan -- Pinkas, Jan -- Branstetter, Dan -- Dougall, William C -- England -- Nature. 2010 Nov 4;468(7320):103-7. doi: 10.1038/nature09495. Epub 2010 Sep 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Hematology/Oncology Research, Amgen Inc, Seattle, Washington 98119, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20881963" target="_blank"〉PubMed〈/a〉
    Keywords: 9,10-Dimethyl-1,2-benzanthracene/administration & dosage/adverse effects ; Animals ; Breast Neoplasms/metabolism/pathology ; Cell Proliferation/drug effects ; Cell Transformation, Neoplastic/*chemically induced/*drug effects/pathology ; Disease Models, Animal ; Epithelial Cells/drug effects/metabolism/pathology ; Female ; Humans ; Lung Neoplasms/secondary ; Mammary Neoplasms, Experimental/*chemically ; induced/genetics/metabolism/*pathology ; Mammary Tumor Virus, Mouse/genetics/physiology ; Medroxyprogesterone Acetate/administration & dosage/adverse effects ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Neoplasm Invasiveness ; Precancerous Conditions/pathology/prevention & control ; Progesterone/administration & dosage/adverse effects ; Progestins/administration & dosage/*adverse effects ; RANK Ligand/antagonists & inhibitors/genetics/*metabolism ; Receptor Activator of Nuclear Factor-kappa B/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...