ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-11-18
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tian, Y., Liu, X., Li, J., Deng, Y., DeGiorgis, J. A., Zhou, S., Caratenuto, A., Minus, M. L., Wan, Y., Xiao, G., & Zheng, Y. Farm-waste-derived recyclable photothermal evaporator. Cell Reports Physical Science, 2(9), (2021): 100549, https://doi.org/10.1016./j.xcrp.2021.100549
    Description: Interfacial solar steam generation is emerging as a promising technique for efficient desalination. Although increasing efforts have been made, challenges exist for achieving a balance among a plethora of performance indicators—for example, rapid evaporation, durability, low-cost deployment, and salt rejection. Here, we demonstrate that carbonized manure can convert 98% of sunlight into heat, and the strong capillarity of porous carbon fibers networks pumps sufficient water to evaporation interfaces. Salt diffusion within microchannels enables quick salt drainage to the bulk seawater to prevent salt accumulation. With these advantages, this biomass-derived evaporator is demonstrated to feature a high evaporation rate of 2.81 kg m−2 h−1 under 1 sun with broad robustness to acidity and alkalinity. These advantages, together with facial deployment, offer an approach for converting farm waste to energy with high efficiency and easy implementation, which is particularly well suited for developing regions.
    Description: This project is supported by the National Science Foundation through grant no. CBET-1941743. This project is based upon work supported in part by the National Science Foundation under EPSCoR Cooperative Agreement no. OIA-1655221.
    Keywords: Biomass ; Recyclable ; Manure ; Farm waste ; Photothermal evaporation ; Desalination
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Angewandte Chemie International Edition in English 16 (1977), S. 607-613 
    ISSN: 0570-0833
    Keywords: Desalination ; Desalination ; Water ; Environmental chemistry ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Salt solutions can be separated into pure water and concentrated salt solution by reverse osmosis using semipermeable membranes. The distinct features and limitations of osmotic separations are developed from a consideration of the pertinent solution properties and the conditions inherently to be met by the membranes, seen as interacting barrier phase in a process which substantially separates water from water.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Angewandte Chemie International Edition in English 21 (1982), S. 660-685 
    ISSN: 0570-0833
    Keywords: Membranes ; Desalination ; Water ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: After a long period of dormancy, membrane separation processes have begun to emerge as technically significant and commercially relevant unit operations. Prior to the mid-sixties, synthetic membranes were employed for those few specialized laboratory applications which could tolerate low permeability and poor selectivity or in electrochemical applications excluding, e. g., batteries, fuel cells, chloride-alkali electrolysis, where marginal chemical stability remained a severe limitation. Within the framework of a broad R & D program started in the US in the mid-fifties and devoted to the production of fresh water from brackish and seawater, developments of more suitable membranes arose out of the application of the principles of physical chemistry, modern polymer chemistry (especially surface or interfacial polymerization and polycondensation technology), and electron microscopy. In particular, it was learned that asymmetric membrane structures comprise a very thin consolidated barrier layer (5000 Å or less for membranes with economically practical filtration rates) supported by an integral but less dense substrate which does not participate in the transport process. Later and after much effort, composite membranes were developed in which the salt-rejecting skin (still only 5000 Å thick) was placed atop a supporting matrix formed from a more chemically and mechanically stable polymer. - The main desalination research effort led to several spin-off developments in related membrane fields, e.g. the successful preparation and commercialization of ultrafiltration technology in the automobile, food, and chemical industries. Also, ion-exchange membranes prepared from perfluorinated polymers offered the electrochemical industry much better chemical stability than the earlier phenolic-resin-based ion-exchange membranes. - Current efforts are aimed at the improved selectivity and stability required for very specific separation processes (e.g. separation of heavy metal salts from waste water or selective enrichment of gases). In the future, the mechanisms of biological processes will have to be exploited for successful development of synthetic membranes suitable for more sophisticated separations.
    Additional Material: 28 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...