ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.09. Structural geology  (13)
  • 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
  • Geological Society of America  (10)
  • Seismological Society of America  (3)
  • Blackwell Science Ltd  (2)
Collection
Keywords
Years
  • 1
    Publication Date: 2020-11-19
    Description: We report on new stratigraphic, palaeomagnetic and anisotropy of magnetic susceptibility (AMS) results from the Amantea basin, located on-shore along the Tyrrhenian coast of the Calabrian Arc (Italy). The Miocene Amantea Basin formed on the top of a brittlely extended upper plate, separated from a blueschist lower plate by a low-angle top-to-the-west extensional detachment fault. The stratigraphic architecture of the basin is mainly controlled by the geometry of the detachment fault and is organized in several depositional sequences, separated by major unconformities. The first sequence (DS1) directly overlaps the basement units, and is constituted by Serravallian coarse-grained conglomerates and sandstones. The upper boundary of this sequence is a major angular unconformity locally marked by a thick palaeosol (type 1 sequence boundary). The second depositional sequence DS2 (middle Tortonian-early Messinian) is mainly formed by conglomerates, passing upwards to calcarenites, sandstones, claystones and diatomites. Finally, Messinian limestones and evaporites form the third depositional sequence (DS3). Our new biostratigraphic data on the Neogene deposits of the Amantea basin indicate a hiatus of 3 Ma separating sequences DS1 and DS2. The structural architecture of the basin is characterized by faulted homoclines, generally westward dipping, dissected by eastward dipping normal faults. Strike-slip faults are also present along the margins of the intrabasinal structural highs. Several episodes of syn-depositional tectonic activity are marked by well-exposed progressive unconformities, folds and capped normal faults. Three main stages of extensional tectonics affected the area during Neogene-Quaternary times: (1) Serravallian low-angle normal faulting; (2) middle Tortonian high-angle syn-sedimentary normal faulting; (3) Messinian-Quaternary high-angle normal faulting. Extensional tectonics controlled the exhumation of high-P/low-T metamorphic rocks and later the foundering of the Amantea basin, with a constant WNW-ESE stretching direction (present-day coordinates), defined by means of structural analyses and by AMS data. Palaeomagnetic analyses performed mainly on the claystone deposits of DSl show a post-Serravallian clockwise rotation of the Amantea basin. The data presented in this paper constrain better the overall timing, structure and kinematics of the early stages of extensional tectonics of the southern Tyrrhenian Sea. In particular, extensional basins in the southern Tyrrhenian Sea opened during Serravallian and evolved during late Miocene. These data confirm that, at that time, the Amantea basin represented the conjugate extensional margin of the Sardinian border, and that it later drifted south-eastward and rotated clockwise as a part of the Calabria-Peloritani terrane.
    Description: Published
    Description: 147-168
    Description: JCR Journal
    Description: reserved
    Keywords: paleomagnetism ; structural geology ; syn-sedimentary tectonics ; Amantea ; Calabria ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-26
    Description: Solidified frictional melts, or pseudotachylytes, remain the only unambiguous indicator of seismic slip in the geological record. However, pseudotachylytes form at 〉5 km depth, and there are many rock types in which they do not form at all. We performed low- to high-velocity rock friction experiments designed to impose realistic coseismic slip pulses on calcite fault gouges, and report that localized dynamic recrystallization may be an easy-to-recognize microstructural indicator of seismic slip in shallow, otherwise brittle fault zones. Calcite gouges with starting grain size 〈250 μm were confined up to 26 MPa normal stress using a purpose-built sample holder. Slip velocities were between 0.01 and 3.4 m s−1, and total displacements between 1 and 4 m. At coseismic slip velocities ≥0.1 m s−1, the gouges were cut by reflective principal slip surfaces lined by polygonal grains 〈1 μm in size. The principal slip surfaces were flanked by 〈300 μm thick layers of dynamically recrystallized calcite (grain size 1–10 μm) containing well-defined shape- and crystallographic-preferred orientations. Dynamic recrystallization was accompanied by fault weakening and thermal decomposition of calcite to CO2 + CaO. The recrystallized calcite aggregates resemble those found along the principal slip surface of the Garam thrust, South Korea, exhumed from 〈5 km depth. We suggest that intense frictional heating along the experimental and natural principal slip surfaces resulted in localized dynamic recrystallization, a microstructure that may be diagnostic of seismic slip in the shallow crust.
    Description: Published
    Description: 63-66
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: reserved
    Keywords: Rock mechanics ; shallow earthquales ; 04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocks ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-05-17
    Description: Earthquakes occur along faults in response to plate tectonic movements, but paradoxically, are not widely recognized in the geological record, severely limiting our knowledge of earthquake physics and hampering accurate assessments of seismic hazard. Light-reflective (so-called mirror like) fault surfaces are widely observed geological features, especially in carbonate-bearing rocks of the shallow crust. Here we report on the occurrence of mirror-like fault surfaces cutting dolostone gouges in the Italian Alps. Using friction experiments, we demonstrate that the mirror-like surfaces develop only at seismic slip rates (∼1 m/s) and for applied normal stresses and sliding displacements consistent with those estimated on the natural faults. Under these experimental conditions, the frictional power density dissipated in the samples is comparable to that estimated for natural earthquakes (1–10 MW/m2). Our results indicate that mirror-like surfaces in dolostone gouges are a signature of seismic faulting, and can be used to estimate power dissipation during ancient earthquake ruptures.
    Description: Published
    Description: 1175-1178
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: reserved
    Keywords: Earthquakes ; Faults ; Carbonates ; Rock Mechanics ; 04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocks ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: An analysis of the field scaling power spectrum yields useful information about the source distribution, but it is uncertain whether deterministic, random, fractal or mixed approaches have to be used for the interpretation. To this end, the scaling properties of potential field spectra are analysed for a number of different source models of geological interest. Besides the models of Naidu (purely random sources) and Spector and Grant (gross block statistical ensembles) we consider other types of density and magnetization distributions with spectral exponents in the fractal range, such as a single homogeneous body with a random white source distribution. Spectral slopes in the fractal range are obtained. We also study the effects of important natural sources, such as salt domes and sedimentary basins, representing them with simple Gaussians or combinations of Gaussian signals. The same spectral slopes as for gravity signals generated by 3-D fractal source distributions are found for them. Hence the power law decay of the field is not a characteristic only of fractal source models. If a 3-D fractal source distribution is assumed a priori, a way of verifying the goodness of the model is to examine the whitened field at source level. The probability that the whitened field derives from a random white population is estimated for synthetic and real anomalies by applying the usual statistical tests.
    Description: Published
    Description: 311-323
    Description: JCR Journal
    Description: reserved
    Keywords: fractals ; potential field ; spectral analysis ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-03
    Description: In September 2002, a series of tectonic earthquakes occurred north of Sicily, Italy, followed by three events of volcanic unrest within 150 km. On October 28, 2002, Mt. Etna erupted; on November 3, 2002, submarine degassing occurred near Panarea Island; and on December 28, 2002, Stromboli Island erupted. All of these events were considered unusual: the Mt. Etna NE-rift eruption was the largest in 55 yr, the Panarea degassing was one of the strongest ever detected there, and the Stromboli eruption, which produced a landslide and tsunami, was the largest effusive eruption in 17 yr. Here, we investigate the synchronous occurrence of these clustered unrest events, and develop a possible explanatory model. We compute short-term earthquake-induced dynamic strain changes and compare them to long-term tectonic effects. Results suggest that the earthquake-induced strain changes exceeded annual tectonic strains by at least an order of magnitude. This agitation occurred in seconds, and may have induced fluid and gas pressure migration within the already active hydrothermal and magmatic systems.
    Description: In press
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.1. Fisica dei terremoti
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.2. TTC - Scenari e mappe di pericolosità sismica
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: open
    Keywords: earthquake trigger ; magma and gas eruptions ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Fissure eruptions may provide important information on the shallow propagation of dikes at volcanoes. Somma-Vesuvius (Italy) consists of the active Vesuvius cone, bordered to the north by the remnants of the older Somma edifice. Historical chronicles are considered to define the development of the 37 fissure eruptions between A.D. 1631 and 1944. The 1631 fissure, which reopened the magmatic conduit, migrated upward and was the only one triggered by the subvertical propagation of a dike. The other 25 fissure eruptions migrated downward, when the conduit was open, through the lateral propagation of radial dikes. We suggest two scenarios for the development of the fissures. When the summit conduit is closed, the fissures are fed by vertically propagating dikes. When the summit conduit is open, the fissures are fed by laterally propagating dikes along the volcano slopes. Consistent behaviors are found at other composite volcanoes, suggesting a general application to our model, independent of the tectonic setting and composition of magma. At Vesuvius, the historical data set and our scenarios are used to predict the consequences of the emplacement of fissures after the opening of the conduit. The results suggest that, even though the probability of opening of vents within the inhabited south and west slopes is negligible, the possibility that these are reached by a lava flow remains significant.
    Description: Published
    Description: 673-676
    Description: reserved
    Keywords: fissures ; dike propagation ; conduit ; Vesuvius ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 308433 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: We propose a Bayesian approach for the determination of the stress field from focal mechanism datasets. This method is a revision of the right trihedra method (RTM), used for both fault striation and focal mechanism data. The new probabilistic formulation of the RTM method (BRTM) allows a quantitative estimation of the confidence regions for the principal stress axes. Using an appropriate graphical representation, the method is able to provide simultaneous information about the stress field and its reliability.
    Description: Published
    Description: 968-977
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: stress inversion ; focal mechanisms ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: No Abstract
    Description: Published
    Description: 546-547
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: Stratigraphic Drilling ; McMurdo Ice Shelf ; Chronostratigraphy ; Neogene ; Tectonics ; Ice Sheet history ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: In the northern Tyrrhenian Sea, late Miocene intrusions (Monte Capanne pluton and Porto Azzurro pluton) were emplaced at upper crustal levels (〈0.2 GPa) in the thrust systems of Elba Island. The emplacement of intrusive rocks is currently explained in the context of late Miocene extensional tectonics. New detailed structural data collected along a continuous natural cross section through the contact aureole of the Porto Azzurro pluton (eastern Elba) where strain localization has occurred within two west-dipping decameter-scale carbonate shear zones, namely the Calanchiole and Felciaio shear zones, are reported here. These shear zones, characterized by a lithological difference with calcite and dolomite marbles dominant in the Calanchiole and Felciaio shear zones, respectively, exhibit a similar rheological behavior. They represent two weakened layers in which west-dipping mylonitic foliation, sheath folds, boudinage structures, and upright folds developed within the contact aureole. Moreover, in correspondence with the Felciaio shear zone, the inversion of metamorphic facies occurs. Meso- and microstructural data give evidence that most of the deformation and displacement in the shear zones was coeval with contact metamorphism and developed under metamorphic conditions retrograde from pyroxene hornfels to hornblende-hornfels facies. Geometric and kinematic features indicate that both shear zones correspond to ductile thrusts, which led to internal stacking of the contact aureole. Therefore, at Elba Island, emplacement of intrusive rocks coeval with late Miocene crustal shortening gives a new perspective on relations between tectonics and magmatism in the northern Apennines.
    Description: Published
    Description: 470-490
    Description: 1.10. TTC - Telerilevamento
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: granite emplacement ; contact aureole ; deformation and metamorphism ; Neogene ; northern Apennines ; Elba Island ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Seismological Society of America
    Publication Date: 2017-04-04
    Description: Calculating seismic hazard usually requires input that includes seismicity associated with known faults, historical earthquake catalogs, geodesy, and models of ground shaking. This paper will address the input generally derived from geologic studies that augment the short historical catalog to predict ground shaking at time scales of tens, hundreds, or thousands of years (e.g., SSHAC 1997). A seismogenic source model, terminology we adopt here for a fault source model, includes explicit three-dimensional faults deemed capable of generating ground motions of engineering significance within a specified time frame of interest. In tectonically active regions of the world, such as near plate boundaries, multiple seismic cycles span a few hundred to a few thousand years. In contrast, in less active regions hundreds of kilometers from the nearest plate boundary, seismic cycles generally are thousands to tens of thousands of years long. Therefore, one should include sources having both longer recurrence intervals and possibly older times of most recent rupture in less active regions of the world rather than restricting the model to include only Holocene faults (i.e., those with evidence of large-magnitude earthquakes in the past 11,500 years) as is the practice in tectonically active regions with high deformation rates. During the past 15 years, our institutions independently developed databases to characterize seismogenic sources based on geologic data at a national scale. Our goal here is to compare the content of these two publicly available seismogenic source models compiled for the primary purpose of supporting seismic hazard calculations by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) and the U.S. Geological Survey (USGS); hereinafter we refer to the two seismogenic source models as INGV and USGS, respectively. This comparison is timely because new initiatives are emerging to characterize seismogenic sources at the continental scale (e.g., SHARE in the Euro- Mediterranean, http://www.share-eu.org/; EMME in the Middle East, http://www.emmegem. org/) and global scale (e.g., GEM, http://www.globalquakemodel.org/; Anonymous 2008). To some extent, each of these efforts is still trying to resolve the level of optimal detail required for this type of compilation. The comparison we provide defines a common standard for consideration by the international community for future regional and global seismogenic source models by identifying the necessary parameters that capture the essence of geological fault data in order to characterize seismogenic sources. In addition, we inform potential users of differences in our usage of common geological/seismological terms to avoid inappropriate use of the data in our models and provide guidance to convert the data from one model to the other (for detailed instructions, see the electronic supplement to this article). Applying our recommendations will permit probabilistic seismic hazard assessment codes to run seamlessly using either seismogenic source input. The USGS and INGV database schema compare well at a first-level inspection. Both databases contain a set of fields representing generalized fault three-dimensional geometry and additional fields that capture the essence of past earthquake occurrences. Nevertheless, there are important differences. When we further analyze supposedly comparable fields, many are defined differently. These differences would cause anomalous results in hazard prediction if one assumes the values are similarly defined. The data, however, can be made fully compatible using simple transformations.
    Description: USGS Senior Scientist In Residence
    Description: Published
    Description: 519-525
    Description: 3.2. Tettonica attiva
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: open
    Keywords: Active fault ; fault source ; database ; seismic hazard ; Italy ; USA ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...