ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
  • seeps
  • Blackwell Publishing Ltd  (5)
  • Wiley-Blackwell  (2)
  • 1
    Publication Date: 2017-04-04
    Description: The paper describes a case of a natural emission of methane from soil in an urban development area, generating a significant risk for the local population and buildings, due to gas explosiveness and asphyxiation potential. The site is located on the south-western margin of the East-European Platform in eastern Romania, in a hydrocarbon-prone area crossed by the Pericarpathian lineament and regional faults. Molecular composition of gas and stable isotopic analyses of methane (CH4〉90%, δ to the power of 13 C1: -49.4‰, δD1: -173.4‰) indicate a dominant thermogenic origin, with significant amounts of C2-C5 alkanes (~5%), likely migrating through faults from a deep reservoir. Possible candidates are the Saucesti and Secuieni gas fields, located in the same petroleum system. Two surface geochemical surveys, based on closed-chamber flux measurements, were performed to assess the degassing intensity and the extent of the affected area. Methane fluxes from soil reach orders of 10 to the power of 4 mg m to the power of -2 day to the power of -1. Gas seepage mainly occurs in one zone 30 000 m2 wide, and it is likely controlled by channeling along a fault and gas accumulation in permeable sediments and shallow subsoil. The estimated total CH4 emission is about 40 t year to the power of -1 CH4, of which 8–9 t year to the power of -1 are naturally released from soil and 30–35 t year to the power of -1 are emitted from shallow boreholes. These wells have likely channeled the gas accumulated in shallow alluvial sediment but gas flux from soil is still high and mitigation measures are needed to reduce the risk for humans and buildings.
    Description: Published
    Description: 311-320
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: gas hazard ; methane seepage ; soil degassing ; thermogenic gas ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The Chimaera gas seep, near Antalya (SW Turkey), has been continuously active for thousands of years and it is known to be the source of the first Olympic fire in the Hellenistic period. New and thorough molecular and isotopic analyses including methane (approximately 87% v/v; δ to the power of 13 C1 from -7.9‰ to -12.3‰; δ to the power of 13 D1 from -119‰ to -124‰), light alkanes (C2 + C3 + C4 + C5 = 0.5%; C6+: 0.07%; δ to the power of 13 C2 from -24.2‰ to -26.5‰; δ to the power of 13 C3 from -25.5‰ to -27‰), hydrogen (7.5–11%), carbon dioxide (0.01–0.07%; δ to the power of 13 CCO2: -15‰), helium (approximately 80 ppmv; R/Ra: 0.41) and nitrogen (2–4.9%; δ to the power of 15 N from -2‰ to -2.8‰) converge to indicate that the seep releases a mixture of organic thermogenic gas, related to mature type III kerogen occurring in Palaeozoic and Mesozoic organic-rich sedimentary rocks, and abiogenic gas produced by low-temperature serpentinization in the Tekirova ophiolitic unit. Methane is not related to mantle or magma degassing. The abiogenic fraction accounts for about half of the total gas released, which is estimated to be well beyond 50 ton year to the power of -1. Ophiolites and limestones are in contact along a tectonic dislocation leading to gas mixing and migration to the Earth’s surface. Chimaera represents the biggest emission of abiogenic methane on land discovered so far. Deep and pressurized gas accumulations are necessary to sustain the Chimaera gas flow for thousands of years and are likely to have been charged by an active inorganic source.
    Description: Published
    Description: 263-273
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: abiogenic methane ; isotopic composition ; ophiolites ; seep ; serpentinization ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The Solfatara is one of the major volcanoes of the Phlegrean Fields (Campi Flegrei) volcanic complex, and it is located in a densely populated area a few kilometres west of the city of Naples. It is an active resurgent caldera that has been characterized by a rich history of surface–ground deformation and soil diffuse degassing and fumarolic emissions, which are indications of the top of a hydrothermal plume. A seismic survey was completed in May 2009 for the characterization of the main subsurface features of the Solfatara. Using the complete data set, we have carried out surface wave inversion with high spatial resolution. A classical minimization of a least-squares objective function was first computed to retrieve the dispersion curves of the surface waves. Then, the fitting procedure between the data and a three-sedimentlayer forward model was carried out (to a depth of 7 m), using an improved version of the neighbourhood algorithm. The inversion results indicate a NE-SW fault, which is not visible at the surface. This was confirmed by a temperature survey conducted in 2010. A passive seismic experiment localized the ambient noise sources that correlate well with the areas of high CO2 flux and high soil temperatures. Finally, considering that the intrinsic attenuation is proportional to the frequency, a centroid analysis provides an overview of the attenuation of the seismic waves, which is closely linked to the petrophysical properties of the rock. These different approaches that merge complete active and passive seismic data with soil temperature and CO2 flux maps confirm the presence of the hydrothermal system plume. Some properties of the top of the plume are indicated and localized.
    Description: Published
    Description: 1725–1733
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: Inverse theory ; Tomography ; Hydrothermal systems ; Europe ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: This thematic issue of Geofluids includes 11 papers representing the three main topics discussed in the 10th edition of the International Conference on Gas Geochemistry (ICGG-10): (i) gas in petroleum systems and seepage, (ii) gas in geothermal systems and volcanoes and (iii) gas, seismicity and geohazards. ICGG-10 was held in 2009 in Romania, a country extraordinarily rich in surface gas manifestations, that offers innumerable opportunities for innovative studies on gas geochemistry. We briefly describe the present knowledge on gases occurring both in petroliferous sedimentary basins and geothermal areas of Romania. The 11 contributions of this special issue, which include data from eight countries, are then summarised. Based on these papers and other works presented at the ICGG-10, we find that significant advances in analytical capabilities, data treating and interpretation have led to innovative insights into the origin, distribution and environmental impact of gases migrating to the Earth’s surface. It is increasingly clear, in particular, that gas geochemistry can be more effective for petroleum exploration, volcano-tectonic, geodynamic and environmental studies, if multiparametric studies are performed and the data are interpreted in the geological context.
    Description: Published
    Description: 457-462
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: geothermal gas ; international conference on gas geochemistry ; natural gas ; romania ; seeps ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Gas seepage from petroleum basins is the second largest natural source of methane to the atmosphere, after wetlands. The uncertainty in global emission estimates should be reduced by extending the flux database which is fundamental for defining the emission factors and the actual area of seepage adopted for up-scaling. As a contribution to this goal, we report a new seepage data-set for the Transylvanian Basin, one of the largest natural gas producing regions of Europe, that is characterized by the widespread occurrence of natural leakages of gas at the surface, including at least 73 mud volcanoes and gas seeps. In this study, methane flux was measured using closed-chambers, from 12 seepage sites, in correspondence with focused gas vents (mud volcano craters, bubbling pools, and flammable gas leaks), in the soil surrounding the vents, and at 15 sites located far from macroseep zones but close to gas fields. Fluxes from individual vents (macro-seeps) were found to reach orders of kg CH4 m)2 day)1 (up to 12 kg m)2 day)1) and diffuse fluxes from soils (miniseepage) were found to be up to a few g CH4 m)2 day)1. Far from seep zones, positive CH4 fluxes (microseepage) may occur locally, typically on the order of tens to hundreds of mg m)2 day)1. The values, as well as the occurrence of seepage even far from vent zones and in mud volcanoes that are apparently extinct, are coherent with results obtained in other countries. Gas fluxes from macro-seeps and soils may change seasonally, but the interannual variation of the average emission factor was found to be minimal. The total CH4 output for Transylvania macro-seeps is estimated conservatively to be around 680 t year)1; the total geo-CH4 seepage emission from the Transylvania petroleum system could be approximately 40 · 103 t year)1, and at least 100 · 103 t year)1 for all Romanian petroleum systems, that is roughly 10% of the total anthropogenic CH4 emission in the country.
    Description: Published
    Description: 463-475
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: gas reservoirs ; methane emissions ; mud volcanoes ; seeps ; Transylvanian Basin ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Natural gas seeps in the Alpine region are poorly investigated. However, they can provide useful information regarding the hydrocarbon potential of sedimentary Alpine units and related geofluid migration, typically controlled by pressurized gas accumulations and tectonics. A gas seep located near Giswil, in the Swiss Northern Alps, was investigated, for the first time, for molecular and isotopic gas composition, methane flux to the atmosphere, and gas flux variations over time. The analyses indicated that the gas was thermogenic (CH4 〉 96%; d13C1: )35.5& to )40.2&) and showed evidence of subsurface petroleum biodegradation (13C-enriched CO2, and very low C3+ concentrations). The source rock in the region is marine Type II kerogen, which is likely the same as that providing thermogenic gas in the nearby Wilen shallow well, close to Lake Sarnen. However, the lack of d13CCO2 and d13C3 data for that well prevented us from determining whether the Wilen and Giswil seeps are fed by the same reservoir and seepage system. Gas fluxes from the Giswil seep, measured using a closedchamber system, were significant and mainly from two major vents. However, a substantial gas exhalation from the soil occurs diffusely in an area of at least 115 m2, leading to a total CH4 output conservatively estimated to be at least 16 tonnes per year. Gas flux variations, monitored over a 1-month period by a special tent and flowmeter, showed not only daily meteorological oscillations, but also an intrinsic ‘pulsation’ with periods of enhanced flux that lasted 2–6 h each, occurring every few days. The pulses are likely related to episodes of gas pressure build-up and discharge along the seepage system. However, to date, no relationship to seismicity in the active Sarnen strike-slip fault system has been established.
    Description: Published
    Description: 476-485
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: Alps ; isotopes ; methane ; organic geochemistry ; seeps ; Switzerland ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-05-09
    Description: Episodic gas seepage occurs at the seafloor in the Gulf of Izmit (Sea of Marmara, NW Turkey) along the submerged segment of the North Anatolian Fault (NAF), which ruptured during the 1999 Mw7.4 Izmit earthquake, and caused tectonic loading of the fault segment in front of the Istanbul metropolitan area. In order to study gas seepage and seismic energy release along the NAF, a multiparametric benthic observatory (SN-4) was deployed in the gulf at the western end of the 1999 Izmit earthquake rupture, and operated for about 1 yr at 166 m water depth. The SN-4 payload included a three-component broad-band seismometer, as well as gas and oceanographic sensors. We analysed data collected continuously for 161 d in the first part of the experiment, from 2009 October to 2010 March. The main objective of our work was to verify whether tectonic deformation along the NAF could trigger methane seepage. For this reason, we considered only local seismicity, that is, within 100 km from the station. No significant (ML ≥ 3.6) local earthquakes occurred during this period; on the other hand, the seismometer recorded high-frequency SDEs (short duration events), which are not related to seismicity but to abrupt increases of dissolved methane concentration in the sea water that we called MPEs (methane peak events). Acquisition of current velocity, dissolved oxygen, turbidity, temperature and salinity, allowed us to analyse the local oceanographic setting during each event, and correlate SDEs to episodic gas discharges from the seabed. We noted that MPEs are the result of such gas releases, but are detected only under favourable oceanographic conditions. This stresses the importance of collecting long-term multiparametric time-series to address complex phenomena such as gas and seismic energy release at the seafloor. Results from the SN-4 experiment in the Sea of Marmara suggest that neither low-magnitude local seismicity, nor regional events affect intensity and frequency of gas flows from the seafloor.
    Description: Published
    Description: 850-866
    Description: 1T. Geodinamica e interno della Terra
    Description: 3A. Ambiente Marino
    Description: 7A. Geofisica di esplorazione
    Description: JCR Journal
    Description: restricted
    Keywords: Time-series analysis ; Seismicity and tectonics ; Broad-band seismometers ; multiparametric seafloor observatory ; Izmit Gulf ; Sea of Marmara ; gas seepage ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...