ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics  (4)
  • Istituto Nazionale di Oceanografia e di Geofisica Sperimentale-OGS  (2)
  • Nature Publishing Group  (2)
  • Blackwell Publishing Ltd
  • Springer Science + Business Media
Collection
Publisher
Years
  • 1
    Publication Date: 2021-04-07
    Description: During the summer of 2010 we carried out a survey to acquire a multidisciplinary dataset within the Gulf of Sant'Eufemia (SE Tyrrhenian sea, Italy), with the aim of studying the active tectonics affecting the region, including that potentially responsible for key, elusive earthquakes such as the to-date unexplained 8 September 1905 (Mw 7 - 7.5) earthquake. The data here analysed highlight the presence of several tectonic and morphologic features characterizing the investigated area. We have recognized the Angitola Channel, a deep and wide canyon showing a straight trend in its coastward segment, and a meandering trend in the seaward segment. Based on morpho-structural elements, we maintain that the Angitola Channel could be tectonically controlled. Moreover, several gravitational instabilities as slumps and collapses affect the flanks of the morpho-structural high, detected offshore Capo Vaticano. Very high resolution seismic data have unveiled the presence of numerous fluid escape features and several mud volcanoes straddling the sector from the coastline to seaward.
    Description: INOGS (RIMA Department) supported the acquisition of the entire dataset.
    Description: Published
    Description: 385-401
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: 1905 earthquake ; active tectonics ; mud vulcanoes ; Gulf of Sant’Eufemia ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Studies of past sea-level markers are commonly used to unveil the tectonic history and seismic behavior of subduction zones. We present new evidence on vertical motions of the Hellenic subduction zone as resulting from a suite of Late Pleistocene - Holocene shorelines in western Crete (Greece). Shoreline ages obtained by AMS radiocarbon dating of seashells, together with the reappraisal of shoreline ages from previous works, testify a long-term uplift rate of 2.5-2.7 mm/y. This average value, however, includes periods in which the vertical motions vary significantly: 2.6-3.2 mm/y subsidence rate from 42 ka to 23 ka, followed by ~7.7 mm/y sustained uplift rate from 23 ka to present. The last ~5 ky shows a relatively slower uplift rate of 3.0-3.3 mm/y, yet slightly higher than the long-term average. A preliminary tectonic model attempts at explaining these up and down motions by across-strike partitioning of fault activity in the subduction zone.
    Description: Published
    Description: 5677
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: coastal geomorphology ; tectonic rates ; paleoshorelines ; subduction ; Crete ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: In this paper, we describe the 1809 eruption of Mt. Etna, Italy, which represents one historical rare case in which it is possible to observe details of the internal structure of the feeder system. This is possible thanks to the presence of two large pit craters located in the middle of the eruptive fracture field that allow studying a section of the shallow feeder system. Along the walls of one of these craters, we analysed well-exposed cross sections of the uppermost 15–20 m of the feeder system and related volcanic products. Here, we describe the structure, morphology and lithology of this portion of the 1809 feeder system, including the host rock which conditioned the propagation of the dyke, and compare the results with other recent eruptions. Finally, we propose the dynamic model of the magma behaviour inside a laterally-propagating feeder dyke, demonstrating how this dynamic triggered important changes in the eruptive style (from effusive/Strombolian to phreatomagmatic) during the same eruption. Our results are also useful for hazard assessment related to the development of flank eruptions, potentially the most hazardous type of eruption from basaltic volcanoes in densely urbanized areas, such as Mt. Etna.
    Description: Published
    Description: 1-11
    Description: 2T. Tettonica attiva
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: N/A or not JCR
    Description: open
    Keywords: feeder dyke ; basaltic volcanoes ; flank eruptions ; Etna ; volcanic hazards ; sill ; volcanic rift ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We present the results of a study aimed at defining the geometry and kinematics of seismogenic volumes and structures of the Lunigiana-Garfagnana region (northwestern Apennines) as depicted by background seismicity recorded before the seismic crisis of 2013. In this analysis we profited from earthquakes located with the high precision algorithm HypoDD and the availability of a large set of focal mechanisms. The obtained data set of well-located hypocentres allowed us to define some previouslyunknown, or only poorly-defined, geometric characteristics. We also confirmed, with a finer detail, some already-known first order features such as the presence of two NW-SE-trending zones of seismicity, west and east of the Apennine water divide, separated by a low seismicity corridor. The main findings of this study are: 1) most of the seismicity of the western zone is located in the Lunigiana graben, north-NW of the Apuane Alps; 2) at depth, the Lunigiana seismicity deepens to the east parallel to the top of the basement, which in turn coincides with an extensional detachment (~30° E-dipping); and 3) the Lunigiana seismicity terminates southwards with a dense cluster of epicentres oriented nearly E-W, parallel to the transfer fault zone that delimits the Apuane Alps to the north; south of this cluster, a strong reduction of seismicity is observed and the locations are shifted to the eastern sector. These findings might help in interpreting the seismotectonics of the 1481, 1837, 1920 and 1995 earthquakes, all located within the E-W-trending cluster at the southern termination of the Lunigiana seismicity.
    Description: Published
    Description: 739-754
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: seismicity ; high precision location ; focal mechanisms ; northern Apennines ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...