ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
  • 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
  • INGV  (6)
  • Blackwell Publishing Ltd  (4)
  • Periodicals Archive Online (PAO)
Collection
Keywords
Years
  • 1
    Publication Date: 2020-10-27
    Description: In this paper we show results from the combinantion of GPS and CGPS data to estimate the velocity and strain fields across the Messina Straits. Data from CGPS networks of ASI, RING and ITALPOS together with GPS data collected since 1980 during repeated campaigns and recently in the frame of the "Progetto Messina" funded by DPC, are discussed and interpreted to improve the current kinematics of this seismic area.
    Description: Published
    Description: Reggio Calabria
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: GPS, Stretto di Messina ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The tectonic deformation of the Lipari-Vulcano complex, one of the most important active volcanic areas of Mediterranean region, is studied here through the analysis of ten years (1996-2006) of GPS data from both 3 permanent and 13 non-permanent stations. This area can be considered crucial for the understanding of the Eurasia-Africa plates interaction in the Mediterranean area, and, in general, this work emphasize a methodological approach, already applied in other areas worldwide (e.g. Shen et al., 1996, El-Fiki and Kato, 1999) where geodetic data and strain parameters maps of critical areas can help to improve our understanding of their geodynamical aspects. In this framework, this study is aimed at providing a kinematic deformation model on the basis of the dense geodetically estimated velocities of the Lipari-Vulcano complex. In particular, the observed deformation pattern can be described by a mix between 1) the main N-S regional compression and 2) a NNE-SSW compression with a small right-lateral strike slip component acting along a tectonic structure N°40W trending located between the two islands. This pattern was inspected through a simplified synthetic model.
    Description: This research has benefited from funding provided by the Italian Presidenza del Consiglio dei Ministri – Dipartimento della Protezione Civile (DPC).
    Description: Published
    Description: 370–377
    Description: 1.9. TTC - Rete GPS nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: GPS ; Aeolian Islands ; strain ; modelling ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-02-03
    Description: Since 2002, between Catanzaro and Vibo Valentia (Calabria), has been set up a new high resolution GPS network. The aim of this network is to record the interseismic and co-seismic deformations of this active region which experienced destructive earthquakes but it is not yet occupied by a GPS geodetic network.
    Description: Published
    Description: Reggio Calabria
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: GPS, Calabria, Stretto di Messina ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Il terremoto del 1908 che ha distrutto le città di Reggio Calabria e Messina costituisce il primo esempio in cui, attraverso l’utilizzo di dati geodetici, è stato possibile ricostruire il campo di deformazione verticale collegato al catastrofico evento. In questo lavoro vengono riassunti i principali risultati della ricerca incentrata sulla caratterizzazione cinematica dell’area dello Stretto di Messina e vengono presentati i primi risultati della rete misurata con modalità GPS nel corso del 2001 e del 2003 nella stessa area. Questi risultati confermano l’importanza dell’approfondimento delle attività di monitoraggio geodetico tra il complesso peloritano calabro e quello siciliano, anche allo scopo di chiarire le numerose ambiguità riscontrate, in questi anni, nella definizione delle strutture che hanno originato il terremoto del 1908.
    Description: Published
    Description: 1-18
    Description: open
    Keywords: GPS ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The paper describes a case of a natural emission of methane from soil in an urban development area, generating a significant risk for the local population and buildings, due to gas explosiveness and asphyxiation potential. The site is located on the south-western margin of the East-European Platform in eastern Romania, in a hydrocarbon-prone area crossed by the Pericarpathian lineament and regional faults. Molecular composition of gas and stable isotopic analyses of methane (CH4〉90%, δ to the power of 13 C1: -49.4‰, δD1: -173.4‰) indicate a dominant thermogenic origin, with significant amounts of C2-C5 alkanes (~5%), likely migrating through faults from a deep reservoir. Possible candidates are the Saucesti and Secuieni gas fields, located in the same petroleum system. Two surface geochemical surveys, based on closed-chamber flux measurements, were performed to assess the degassing intensity and the extent of the affected area. Methane fluxes from soil reach orders of 10 to the power of 4 mg m to the power of -2 day to the power of -1. Gas seepage mainly occurs in one zone 30 000 m2 wide, and it is likely controlled by channeling along a fault and gas accumulation in permeable sediments and shallow subsoil. The estimated total CH4 emission is about 40 t year to the power of -1 CH4, of which 8–9 t year to the power of -1 are naturally released from soil and 30–35 t year to the power of -1 are emitted from shallow boreholes. These wells have likely channeled the gas accumulated in shallow alluvial sediment but gas flux from soil is still high and mitigation measures are needed to reduce the risk for humans and buildings.
    Description: Published
    Description: 311-320
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: gas hazard ; methane seepage ; soil degassing ; thermogenic gas ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The Chimaera gas seep, near Antalya (SW Turkey), has been continuously active for thousands of years and it is known to be the source of the first Olympic fire in the Hellenistic period. New and thorough molecular and isotopic analyses including methane (approximately 87% v/v; δ to the power of 13 C1 from -7.9‰ to -12.3‰; δ to the power of 13 D1 from -119‰ to -124‰), light alkanes (C2 + C3 + C4 + C5 = 0.5%; C6+: 0.07%; δ to the power of 13 C2 from -24.2‰ to -26.5‰; δ to the power of 13 C3 from -25.5‰ to -27‰), hydrogen (7.5–11%), carbon dioxide (0.01–0.07%; δ to the power of 13 CCO2: -15‰), helium (approximately 80 ppmv; R/Ra: 0.41) and nitrogen (2–4.9%; δ to the power of 15 N from -2‰ to -2.8‰) converge to indicate that the seep releases a mixture of organic thermogenic gas, related to mature type III kerogen occurring in Palaeozoic and Mesozoic organic-rich sedimentary rocks, and abiogenic gas produced by low-temperature serpentinization in the Tekirova ophiolitic unit. Methane is not related to mantle or magma degassing. The abiogenic fraction accounts for about half of the total gas released, which is estimated to be well beyond 50 ton year to the power of -1. Ophiolites and limestones are in contact along a tectonic dislocation leading to gas mixing and migration to the Earth’s surface. Chimaera represents the biggest emission of abiogenic methane on land discovered so far. Deep and pressurized gas accumulations are necessary to sustain the Chimaera gas flow for thousands of years and are likely to have been charged by an active inorganic source.
    Description: Published
    Description: 263-273
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: abiogenic methane ; isotopic composition ; ophiolites ; seep ; serpentinization ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: On May 20th and 29th, 2012, two earthquakes having magnitude 5.9 and 5.8, respectively, and their aftershocks sequence hit the central Po Plain (Italy), about 40 km north of Bologna, in the northern Apennines. Following the main-shocks, more than 2,000 events were recorded by the INGV National Seismic Network (http://iside.rm.ingv.it/). During the seismic sequence, a pure compressional faulting was generated by the activation of blind thrusts of the western Ferrara Arc, thereby activating a 50 km-long stretch of this buried outer front of the northern Apennines. The focal mechanisms of the larger shocks agree with the compilation of present-day tectonic stress indicators, showing a ca. N-S oriented maximum horizontal stress in the area, i.e. oriented perpendicular to the main structural trends. Most of the seismic sequence was confined between 1 and 12 km depth, above the local basal detachment of the outer thrust front of the northern Apennines. The surface displacement pattern, associated with the mainshocks and some following minor events (some of which above M 5.0), has been measured by applying Interferometric Synthetic Aperture Radar (InSAR) technique to a pair of C-Band Radarsat-1 data. The coseismic movements detected overall the epicentral region have been here used as input information for the source inversion model.
    Description: Published
    Description: 789-795
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: restricted
    Keywords: SAR interferometry ; Deformation ; Emlilia seismic sequence ; Source modeling ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: We present an improved evaluation of the current strain and stress fields in Southern Apennines (Italy) obtained through a careful analysis of geodetic, seismological and borehole data. In particular, our analysis provides an updated comparison between the accrued strain recorded by geodetic data, and the strain released by seismic activity in a region hit by destructive historical earthquakes. To this end, we have used 9 years of GPS observations (2001-2010) from a dense network of permanent stations, a dataset of 73 well constrained stress indicators (borehole breakouts and focal mechanisms of moderate to large earthquakes), and published estimations of the geological strain accommodated by active faults in the region. Although geodetic data are generally consistent with seismic and geologic information, previously unknown features of the current deformation in southern Italy emerge from this analysis. The newly obtained GPS velocity field supports the well-established notion of a dominant NE-SW-oriented extension concentrated in a ~50 km wide belt along the topographic relief of the Apennines, as outlined by the distribution of seismogenic normal faults. Geodetic deformation is, however, non uniform along the belt, with two patches of higher strain-rate and shear stress accumulation in the north (Matese Mountains) and in the south (Irpinia area). Low geodetic strain-rates are found in the Bradano basin and Apulia plateau to the east. Along the Ionian Sea margin of southern Italy, in southern Apulia and eastern Basilicata and Calabria, geodetic velocities indicate NW-SE extension which is consistent with active shallow-crustal gravitational motion documented by geological studies. In the west, along the Tyrrhenian margin of the Campania region, the tectonic geodetic field is disturbed by volcanic processes. Comparison between the magnitude of the geodetic and the seismic strain-rates (computed using a long historical seismicity catalogue) allow detecting areas of high correlation, particularly along the axis of the mountain chain, indicating that most of the geodetic strain is released by earthquakes. This relation does not hold for the instrumental seismic catalogue, as a consequence of the limited time span covered by instrumental data. In other areas (e.g. Murge plateau in central Apulia), where seismicity is very low or absent, the yet appreciable geodetic deformation might be accommodated in aseismic mode. Overall, the excellent match between the stress and the strain-rate directions in much of the Apennines indicates that both earthquakes and ground deformation patterns are driven by the same crustal forces.
    Description: Published
    Description: 1270-1282
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Satellite geodesy ; Plate motions ; Neotectonics ; Europe ; Apennines ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Acidification of seawater is one of the aspect tightly linked to volcanic risk, due to the presence of submarine vents releasing abundant volcanic fluids. In aquatic system CO2 gas dissolves, hydrates and dissociates to form weak carbonic acid, which is the main driver of natural weathering reactions [Drever, 1997]. The result of the CO2 increase is seawater acidification. Vulcano Island, the southernmost of Aeolian Islands, is located in the Southern Tyrrhenian Sea (Italy), approximately 18 miles off the NE coast of Sicily. The Baia di Levante can be considered a natural laboratory where almost all of the biogeochemical processes related to the ocean acidification can be studied. In this area many submarine vents release CO2. Four geochemical surveys of the Bay were carried out in April - September 2011 and May - June 2012. The main physic-chemical parameters (T, pH, Eh, electric conductivity) were measured at more than 70 sites and more than 40 samples for chemical analyses were collected at representative points. Major (Na, K, Mg, Ca, Cl, SO4) and some minor components (B, Sr, Fe) and trace elements (Mn, Mo, Al, U, Ce, Pb, Tm, Tb, Nd, Th) dissolved in water, the chemical composition of dissolved gases (He, H2, O2, N2, CH4 and CO2) and the isotopic composition of total dissolved inorganic carbon were determined in the laboratory. The bubbling CO2 produces a strong decrease in pH from the normal seawater value of 8.2 down to 5.5 (Figure 1). In the area close to the main degassing vents, characterized by very low pH, macroorganisms were absent. Acidification of sea water is one of the aspect tightly linked to volcanic risk, due to the presence of submarine vents releasing abundant volcanic fluids. At Baia di Levante, about 300 m from the main vents the seawater is only slightly acidic (pH 6.5 - 7.0) resembling the ocean water conditions in equilibrium with the high atmospheric CO2 concentrations expected in the near future. Therefore environments like this, naturally enriched in CO2, are good laboratories to study the consequences of ocean acidification on aquatic biota [Doney et al., 2009]. Furthermore acidification is tightly linked with the mobility and bio-availability of heavy metals [Millero et al., 2009] in sea water and volcanoes were always the favourite choice for human settlements; as a consequence economic anthropological activity, such as fishing, could be dangerous for human health, because of the presence toxic level of trace metals in the food chain due to the presence of the volcano’s. The present study could provide important information about the best environmental management of volcanic areas such as Vulcano Island
    Description: Published
    Description: Nicolosi (Catania)
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: ocean acidification ; environmental impact of volcanic activity ; volcanic gases ; trace elements ; 03. Hydrosphere::03.04. Chemical and biological::03.04.01. Biogeochemical cycles ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-11-04
    Description: Campi Flegrei is a unique volcanic region located near Naples, Italy. Anomalous crustal movements at Pozzuoli in Campi Flegrei have been documented since the Roman period. The movements were gradual and have continued to the present, occasionally accompanying swarms of local earthquakes and volcanic eruptions. Generally the movements proceed with low seismicity. After the 1538 eruption of Monte Nuovo, Pozzuoli had subsided monotonously, but it changed to uplift abruptly in 1969. The uplift accelerated in 1983 and 1984 reaching more than 2 m, and thereafter began to subside. Many discussions of this event have been published. In Japan, we have examples of deformations similar to those at Campi Flegrei, mainly in volcanic areas, and rarely in non-volcanic areas. The former includes Iwojima, Miyakejima and Aira caldera while the latter is represented by Cape Omaezaki. Iwojima is a volcano island, and its secular uplifts since the 18th century are recognized as an unusual event. Miyakejima volcano and Aira caldera exhibited anomalous movements with low seismicity after their eruptions. Cape Omaezaki is not situated in volcanic zone but near a subduction zone, and gradually and continuously subsides as a precursor to a large earthquake. In such cases as Campi Flegrei and the Japanese localities, we would question whether the deformations are accompanied by normal seismicity or low seismicity. To examine quantitatively the relationship between seismicity and related deformation, seismic efficiency is generally useful. The crustal deformations in all the regions cited above are characterized by exceptionally low seismic efficiencies. In the present paper, the deformations at Pozzuoli and Iwojima are mainly described and a comparative discussion among these and other localities in Japan is supplemented. It is concluded that such anomalous phenomena in volcanic areas are attributable to peculiar rheological aspects of the material composing the local upper crust, and the deformation in a non-volcanic area is of tectonic origin.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: crustal movements ; low seismic efficiency ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 391986 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...