ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Arctic  (33)
  • American Meteorological Society  (30)
  • Massachusetts Institute of Technology and Woods Hole Oceanographic Institution  (3)
  • Molecular Diversity Preservation International
  • 11
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 27 (2010): 1936-1949, doi:10.1175/2010JTECHO772.1.
    Description: Four ice-tethered profilers (ITPs), deployed between 2006 and 2009, have provided year-round dissolved oxygen (DO) measurements from the surface mixed layer to 760-m depth under the permanent sea ice cover in the Arctic Ocean. These ITPs drifted with the permanent ice pack and returned 2 one-way profiles per day of temperature, salinity, and DO. Long-term calibration drift of the oxygen sensor can be characterized and removed by referencing to recently calibrated ship DO observations on deep isotherms. Observed changes in the water column time series are due to both drift of the ITP into different water masses and seasonal variability, driven by both physical and biological processes within the water column. Several scientific examples are highlighted that demonstrate the considerable potential for sustained ITP-based DO measurements to better understand the Arctic Ocean circulation patterns and biogeochemical processes beneath the sea ice.
    Description: The National Science Foundation Office of Polar Programs Arctic Sciences Section under Awards ARC-0519899, ARC-0856479, and ARC-0806306 provided funding.
    Keywords: Profilers ; Ice shelves ; Arctic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 413–426, doi:10.1175/JPO-D-13-0117.1.
    Description: Salinity and temperature profiles from drifting ice-tethered profilers in the Beaufort gyre region of the Canada Basin are used to characterize and quantify the regional near-inertial internal wave field over one year. Vertical displacements of potential density surfaces from the surface to 750-m depth are tracked from fall 2006 to fall 2007. Because of the time resolution and irregular sampling of the ice-tethered profilers, near-inertial frequency signals are marginally resolved. Complex demodulation is used to determine variations with a time scale of several days in the amplitude and phase of waves at a specified near-inertial frequency. Characteristics and variability of the wave field over the course of the year are investigated quantitatively and related to changes in surface wind forcing and sea ice cover.
    Description: The ITP program and J. Toole’s contributions were supported by the National Science Foundation Office of Polar Programs Arctic Observing Network. We acknowledge the support of the Office of Naval Research (Grant N00014-11-1-0454) for this study. Support for H. Dosser was also provided by the Natural Sciences and Engineering Research Council of Canada.
    Description: 2014-08-01
    Keywords: Geographic location/entity ; Arctic ; Circulation/ Dynamics ; Inertia-gravity waves ; Internal waves ; Observational techniques and algorithms ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 3263-3278, doi:10.1175/JPO-D-16-0091.1.
    Description: The halocline of the Beaufort Gyre varies significantly on interannual to decadal time scales, affecting the freshwater content (FWC) of the Arctic Ocean. This study explores the role of eddies in the Ekman-driven gyre variability. Following the transformed Eulerian-mean paradigm, the authors develop a theory that links the FWC variability to the stability of the large-scale gyre, defined as the inverse of its equilibration time. The theory, verified with eddy-resolving numerical simulations, demonstrates that the gyre stability is explicitly controlled by the mesoscale eddy diffusivity. An accurate representation of the halocline dynamics requires the eddy diffusivity of 300 ± 200 m2 s−1, which is lower than what is used in most low-resolution climate models. In particular, on interannual and longer time scales the eddy fluxes and the Ekman pumping provide equally important contributions to the FWC variability. However, only large-scale Ekman pumping patterns can significantly alter the FWC, with spatially localized perturbations being an order of magnitude less efficient. Lastly, the authors introduce a novel FWC tendency diagnostic—the Gyre Index—that can be conveniently calculated using observations located only along the gyre boundaries. Its strong predictive capabilities, assessed in the eddy-resolving model forced by stochastic winds, suggest that the Gyre Index would be of use in interpreting FWC evolution in observations as well as in numerical models.
    Description: GEMacknowledges the support from theHowland Postdoctoral Program Fund at WHOI and the Stanback Fellowship Fund at Caltech.MAS was supported by NSF Grants PLR-1415489 and OCE-1232389. AFT acknowledges support from NASA Award NNN12AA01C.
    Description: 2017-04-20
    Keywords: Arctic ; Eddies ; Ekman pumping/transport ; Large-scale motions ; Ocean circulation ; Stability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 1367-1373, doi:10.1175/JPO-D-17-0185.1.
    Description: An earlier study indicates that the side melting of icebergs subject to vertically homogeneous horizontal velocities is controlled by two distinct regimes, which depend on the melt plume behavior and produce a nonlinear dependence of side melt rate on velocity. Here, we extend this study to consider ice blocks melting in a two-layer vertically sheared flow in a laboratory setting. It is found that the use of the vertically averaged flow speed in current melt parameterizations gives an underestimate of the submarine side melt rate, in part because of the nonlinearity of the dependence of the side melt rate on flow speed but also because vertical shear in the horizontal velocity profile fundamentally changes the flow splitting around the ice block and consequently the velocity felt by the ice surface. An observational record of 90 icebergs in a Greenland fjord suggests that this effect could produce an average underestimate of iceberg side melt rates of 21%.
    Description: A. F. was supported by NA14OAR4320106 from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce. C. C. was supported by NSF OCE-1658079 and F. S. was supported by NSF OCE-1657601 and NSF PLR-1743693.
    Description: 2018-12-12
    Keywords: Ocean ; Antarctica ; Arctic ; Laboratory/physical models ; Parameterization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-03-01
    Description: To examine the atmospheric responses to Arctic sea ice variability in the Northern Hemisphere cold season (from October to the following March), this study uses a coordinated set of large-ensemble experiments of nine atmospheric general circulation models (AGCMs) forced with observed daily varying sea ice, sea surface temperature, and radiative forcings prescribed during the 1979–2014 period, together with a parallel set of experiments where Arctic sea ice is substituted by its climatology. The simulations of the former set reproduce the near-surface temperature trends in reanalysis data, with similar amplitude, and their multimodel ensemble mean (MMEM) shows decreasing sea level pressure over much of the polar cap and Eurasia in boreal autumn. The MMEM difference between the two experiments allows isolating the effects of Arctic sea ice loss, which explain a large portion of the Arctic warming trends in the lower troposphere and drive a small but statistically significant weakening of the wintertime Arctic Oscillation. The observed interannual covariability between sea ice extent in the Barents–Kara Seas and lagged atmospheric circulation is distinguished from the effects of confounding factors based on multiple regression, and quantitatively compared to the covariability in MMEMs. The interannual sea ice decline followed by a negative North Atlantic Oscillation–like anomaly found in observations is also seen in the MMEM differences, with consistent spatial structure but much smaller amplitude. This result suggests that the sea ice impacts on trends and interannual atmospheric variability simulated by AGCMs could be underestimated, but caution is needed because internal atmospheric variability may have affected the observed relationship.
    Description: Published
    Description: 8419–8443
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Keywords: Arctic ; Sea ice ; Atmospheric circulation ; Climate models ; 01.01. Atmosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2023-01-18
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2022.
    Description: This thesis encompasses an analysis of underwater ambient noise collected by the yearlong Canada Basin Acoustic Propagation Experiment (CANAPE) on the Chukchi Shelf of the Arctic. This location contained the Beaufort Duct, a significant effect of climate change on the Arctic’s underwater soundscape. A study of the statistical and probability metrics was conducted on a frequency band of 50-1900 Hz to examine the relation between environmental drivers and noise patterns. The presence of ice typically decreases broadband ambient noise, when compared to ice-free seas. However, the Beaufort Duct under ice increases the ambient noise levels below 1 kHz. The relationship between ambient noise and the environment is further explored by studying the link between distant ice movements and ambient levels Correlation between the two is found to exist from 300-1500 Hz, as distant ( 500 km) ice drift motion appears to drive noise levels at the receiver.
    Description: Funding sources include the US Navy and Office of Naval Research.
    Keywords: Arctic ; Ambient ; Noise
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-06-21
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(6),(2022): 1191-1204, https://doi.org/10.1175/jpo-d-21-0242.1.
    Description: A simplified quasigeostrophic (QG) analytical model together with an idealized numerical model are used to study the effect of uneven ice–ocean stress on the temporal evolution of the geostrophic current under sea ice. The tendency of the geostrophic velocity in the QG model is given as a function of the lateral gradient of vertical velocity and is further related to the ice–ocean stress with consideration of a surface boundary layer. Combining the analytical and numerical solutions, we demonstrate that the uneven stress between the ice and an initially surface-intensified, laterally sheared geostrophic current can drive an overturning circulation to trigger the displacement of isopycnals and modify the vertical structure of the geostrophic velocity. When the near-surface isopycnals become tilted in the opposite direction to the deeper ones, a subsurface velocity core is generated (via geostrophic setup). This mechanism should help understand the formation of subsurface currents in the edge of Chukchi and Beaufort Seas seen in observations. Furthermore, our solutions reveal a reversed flow extending from the bottom to the middepth, suggesting that the ice-induced overturning circulation potentially influences the currents in the deep layers of the Arctic Ocean, such as the Atlantic Water boundary current.
    Description: This work was funded by the National Key Research and Development Program of China (Grant 2017YFA0604600), the National Natural Science Foundation of China (Grant 41676019), the Fundamental Research Funds for the Central Universities (Grant 2019B81214), the Postgraduate Research and Practice Innovation Program of Jiangsu Province (Grant KYCX19_0384), and the National Science Foundation (MAS, Grants OPP-1822334, OCE-2122633).
    Keywords: Arctic ; Sea ice ; Channel flows ; Vertical motion ; Ekman pumping ; Idealized models ; Quasigeostrophic models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2021.
    Description: Operations in the Arctic Ocean are increasingly important due to the changing environment and the resulting global implications. These changes range from the availability of new global trade routes, accessibility of newly available resources in the area, and national security interests of the United States in the region. It’s necessary to build a greater understanding of the undersea environment and how it’s changing since these environmental changes have a direct impact on adjusting future operations in the region and looming global changes as less Arctic ice is present. The recent presence of the Beaufort Lens is changing the acoustic propagation paths throughout the Arctic region. Here a network of buoys were employed to communicate with an Autonomous Undersea Vehicle (AUV) while it operated under the ice throughout the Beaufort Lens with the goal of achieving near GPS quality navigation. The acoustic communications paths were compared using a vertical array throughout the Beaufort Lens. This beam forming was compared to the prediction from BELLHOP. As well, since acoustic communications are affected by multi-path, attenuation and interference from other sources it was interesting to note that bottom bounce was sometimes a reliable acoustic path.
    Keywords: Arctic ; Beaufort Lens ; Acoustic communications
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science in Chemical Oceanography at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2020.
    Description: Arctic marine and lacustrine systems are experiencing rapid warming due to climate change. These changes are especially important at the interface between sediments and surface waters because they are hotspots for biogeochemical transformations such as redox reactions, nutrient consumption and regeneration, organic matter leaching and degradation, and mineral weathering. Radium isotopes (223Ra, 224Ra, 226Ra, 228Ra) and radon-222, naturally occurring radioactive isotopes produced in sediments, are well-suited as tracers of nutrients, trace metals, and organic matter cycling processes at the sediment-water interface. In this thesis, I have applied radon-222 and the quartet of radium isotopes to study fundamental processes in subarctic lakes and on the Arctic continental shelf. First, radon-222 is used to quantify groundwater discharge into a shallow, tundra lake on the Yukon-Kuskokwim Delta in Alaska in summer of 2017. Radon-derived groundwater fluxes were then paired with methane (CH4) measurements to determine delivery rates of methane into the lake via groundwater. Groundwater CH4 fluxes significantly exceeded diffusive air-water fluxes from the lake to the atmosphere, suggesting that groundwater is an important source of CH4 to Arctic lakes and may drive observed CH4 emissions. Higher CH4 emissions were observed compared to those reported previously in high latitude lakes, like due to higher CH4 concentrations in groundwater. These findings indicate that deltaic lakes across warmer permafrost regions may act as important hotspots for methane release across Arctic landscapes. Then, the quartet of radium isotopes is used to study the impacts of storms and sea ice formation as drivers of sediment-water interaction on the Alaskan Beaufort shelf. The timeseries presented in this study is among the first to document the combined physical and chemical signals of winter water formation in the Beaufort Sea, made possible by repeat occupations of the central Beaufort shelf. Radium measurements are combined with inorganic nitrogen and hydrographic measurements to elucidate the episodic behavior of winter water formation and its ability to drive exchange with bottom sediments during freeze-up.
    Description: Financial support for Chapter 2 was funded by National Science Foundation awards OCE-1458305 to M.A.C., 1561437 to S.M.N, J.D.S., and R.M.H and 1624927 to S.M.N., P.J.M. and R.M.H. The work completed for Chapter 3 was funded by the Montrym Fund at the Massachusetts Institute of Technology, the Academic Programs Office at Woods Hole Oceanographic Institution, and the NSF Arctic GEOTRACES (OCE-1458305), Pacific GEOTRACES (OCE-1736277), and Arctic Observing Network programs (OPP-1733564).
    Keywords: Arctic ; Sediment ; Radionuclides
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(1), (2021): 19-35, https://doi.org/10.1175/JPO-D-19-0233.1.
    Description: In the Beaufort Sea in September of 2015, concurrent mooring and microstructure observations were used to assess dissipation rates in the vicinity of 72°35′N, 145°1′W. Microstructure measurements from a free-falling profiler survey showed very low [O(10−10) W kg−1] turbulent kinetic energy dissipation rates ε. A finescale parameterization based on both shear and strain measurements was applied to estimate the ratio of shear to strain Rω and ε at the mooring location, and a strain-based parameterization was applied to the microstructure survey (which occurred approximately 100 km away from the mooring site) for direct comparison with microstructure results. The finescale parameterization worked well, with discrepancies ranging from a factor of 1–2.5 depending on depth. The largest discrepancies occurred at depths with high shear. Mean Rω was 17, and Rω showed high variability with values ranging from 3 to 50 over 8 days. Observed ε was slightly elevated (factor of 2–3 compared with a later survey of 11 profiles taken over 3 h) from 25 to 125 m following a wind event which occurred at the beginning of the mooring deployment, reaching a maximum of ε= 6 × 10−10 W kg−1 at 30-m depth. Velocity signals associated with near-inertial waves (NIWs) were observed at depths greater than 200 m, where the Atlantic Water mass represents a reservoir of oceanic heat. However, no evidence of elevated ε or heat fluxes was observed in association with NIWs at these depths in either the microstructure survey or the finescale parameterization estimates.
    Description: This work was supported by NSF Grants PLR 14-56705 and PLR-1303791 and by NSF Graduate Research Fellowship Grant DGE-1650112.
    Keywords: Ocean ; Arctic ; Internal waves ; Turbulence ; Diapycnal mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...