ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Arctic
  • Diapycnal mixing
  • American Meteorological Society  (61)
  • Routledge  (2)
  • Blackwell Publishing Ltd
Collection
Keywords
Language
Years
  • 1
    facet.materialart.
    Unknown
    Taylor & Francis | International Arctic Petroleum Cooperation: Barents Sea Scenarios | Routledge
    Publication Date: 2024-03-30
    Description: Will Arctic states cooperate in the development of Arctic petroleum resources? This is what they declare, but the barriers to the cooperative development of Arctic petroleum resources are intensifying and the future is unclear.
    Keywords: natural resources ; actic region ; natural resources ; actic region ; Anatoly Zolotukhin ; Arctic ; Barents Sea ; Norway ; Norway–Russia border ; Petroleum ; Petroleum industry ; Russia ; thema EDItEUR::K Economics, Finance, Business and Management::KN Industry and industrial studies::KNB Energy industries and utilities::KNBP Petroleum, oil and gas industries
    Language: English
    Format: image/jpeg
    Format: image/jpeg
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Taylor & Francis | International Arctic Petroleum Cooperation: Barents Sea Scenarios | Routledge
    Publication Date: 2023-09-12
    Description: The political relationship between Norway and Russia will influence the development of Barents Sea oil and gas. The state plays a decisive role in both the Norwegian and Russian parts of the sea. It does so as a regulator, through taxation, and through the national oil and gas companies, Gazprom, Rosneft, and Statoil. Thus, if the two states have a good relationship characterized by mutual trust, they can coordinate, search for complementarities, and mitigate issues that arise. Furthermore, due to the rising cost of oil and gas production in the Arctic, many oil and gas fields there may deliver small returns on investments. Scale economies brought about by coordinated development, joint infrastructure, and information sharing can tip projects from being commercially unviable to viable. But this depends on the ability and willingness of the two states to actively work together.
    Keywords: natural resources ; acrtic region ; natural resources ; acrtic region ; Arctic ; Barents Sea ; Gazprom ; Norway ; Petroleum ; Rosneft ; Russia ; Russians ; Ukraine ; bic Book Industry Communication::K Economics, finance, business & management::KN Industry & industrial studies::KNB Energy industries & utilities::KNBP Petroleum & oil industries
    Language: English
    Format: image/jpeg
    Format: image/jpeg
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 25 (2008): 2091-2105, doi:10.1175/2008JTECHO587.1.
    Description: An automated, easily deployed Ice-Tethered Profiler (ITP) instrument system, developed for deployment on perennial sea ice in the polar oceans to measure changes in upper ocean water properties in all seasons, is described, and representative data from prototype instruments are presented. The ITP instrument consists of three components: a surface subsystem that sits atop an ice floe; a weighted, plastic-jacketed wire-rope tether of arbitrary length (up to 800 m) suspended from the surface element; and an instrumented underwater unit that employs a traction drive to profile up and down the wire tether. ITPs profile the water column at a programmed sampling interval; after each profile, the underwater unit transfers two files holding oceanographic and engineering data to the surface unit using an inductive modem and from the surface instrument to a shore-based data server using an Iridium transmitter. The surface instrument also accumulates battery voltage readings, buoy temperature data, and locations from a GPS receiver at a specified interval (usually every hour) and transmits those data daily. Oceanographic and engineering data are processed, displayed, and made available in near–real time (available online at http://www.whoi.edu/itp). Six ITPs were deployed in the Arctic Ocean between 2004 and 2006 in the Beaufort gyre with various programmed sampling schedules of two to six one-way traverses per day between 10- and 750–760-m depth, providing more than 5300 profiles in all seasons (as of July 2007). The acquired CTD profile data document interesting spatial variations in the major water masses of the Canada Basin, show the double-diffusive thermohaline staircase that lies above the warm, salty Atlantic layer, measure seasonal surface mixed layer deepening, and document several mesoscale eddies. Augmenting the systems already deployed and to replace expiring systems, an international array of more than one dozen ITPs will be deployed as part of the Arctic Observing Network during the International Polar Year (IPY) period (2007–08) holding promise for more valuable real-time upper ocean observations for operational needs, to support studies of ocean processes, and to facilitate numerical model initialization and validation.
    Description: Initial development of the ITP concept was supported by the Cecil H. and Ida M. Green Technology Innovation Program. Funding for construction and deployment of the prototype ITPs was provided by the National Science Foundation Oceanographic Technology and Interdisciplinary Coordination (OTIC) Program and Office of Polar Programs (OPP) under Grant OCE-0324233. Continued support has been provided by the OPP Arctic Sciences Section under Awards ARC-0519899 and ARC-0631951, and internal WHOI funding.
    Keywords: Profilers ; Sea ice ; Instrumentation/sensors ; Arctic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 1066–1076, doi:10.1175/JPO3032.1.
    Description: A 50-day time series of high-resolution temperature in the deepest layers of the Canada Basin in the Arctic Ocean indicates that the deep Canada Basin is a dynamically active environment, not the quiet, stable basin often assumed. Vertical motions at the near-inertial (tidal) frequency have amplitudes of 10– 20 m. These vertical displacements are surprisingly large considering the downward near-inertial internal wave energy flux typically observed in the Canada Basin. In addition to motion in the internal-wave frequency band, the measurements indicate distinctive subinertial temperature fluctuations, possibly due to intrusions of new water masses.
    Keywords: Arctic ; Ocean dynamics ; Ship observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 2743–2756, doi:10.1175/2010JPO4339.1.
    Description: Analysis of modern and historical observations demonstrates that the temperature of the intermediate-depth (150–900 m) Atlantic water (AW) of the Arctic Ocean has increased in recent decades. The AW warming has been uneven in time; a local 1°C maximum was observed in the mid-1990s, followed by an intervening minimum and an additional warming that culminated in 2007 with temperatures higher than in the 1990s by 0.24°C. Relative to climatology from all data prior to 1999, the most extreme 2007 temperature anomalies of up to 1°C and higher were observed in the Eurasian and Makarov Basins. The AW warming was associated with a substantial (up to 75–90 m) shoaling of the upper AW boundary in the central Arctic Ocean and weakening of the Eurasian Basin upper-ocean stratification. Taken together, these observations suggest that the changes in the Eurasian Basin facilitated greater upward transfer of AW heat to the ocean surface layer. Available limited observations and results from a 1D ocean column model support this surmised upward spread of AW heat through the Eurasian Basin halocline. Experiments with a 3D coupled ice–ocean model in turn suggest a loss of 28–35 cm of ice thickness after 50 yr in response to the 0.5 W m−2 increase in AW ocean heat flux suggested by the 1D model. This amount of thinning is comparable to the 29 cm of ice thickness loss due to local atmospheric thermodynamic forcing estimated from observations of fast-ice thickness decline. The implication is that AW warming helped precondition the polar ice cap for the extreme ice loss observed in recent years.
    Description: This study was supported by JAMSTEC (IP and VI), NOAA (IP, VI, and ID), NSF (IP,VA,VI, ID, JT, andMS),NASA(IP andVI), BMBF (ID), and UK NERC (SB) grants.
    Keywords: Arctic ; Forcing ; Temperature ; Sea ice ; Heating ; Coupled models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 1012–1021, doi:10.1175/JPO-D-11-0184.1.
    Description: Pacific Water flows across the shallow Chukchi Sea before reaching the Arctic Ocean, where it is a source of heat, freshwater, nutrients, and carbon. A substantial portion of Pacific Water is routed through Barrow Canyon, located in the northeast corner of the Chukchi. Barrow Canyon is a region of complex geometry and forcing where a variety of water masses have been observed to coexist. These factors contribute to a dynamic physical environment, with the potential for significant water mass transformation. The measurements of turbulent kinetic energy dissipation presented here indicate diapycnal mixing is important in the upper canyon. Elevated dissipation rates were observed near the pycnocline, effectively mixing winter and summer water masses, as well as within the bottom boundary layer. The slopes of shear/stratification layers, combined with analysis of rotary spectra, suggest that near-inertial wave activity may be important in modulating dissipation near the bottom. Because the canyon is known to be a hotspot of productivity with an active benthic community, mixing may be an important factor in maintenance of the biological environment.
    Description: ELS was supported as a WHOI Postdoctoral Scholar through the WHOI Ocean and Climate Change Institute.
    Description: 2012-12-01
    Keywords: Arctic ; Continental shelf/slope ; Mixing ; Small scale processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 1524–1547, doi:10.1175/JPO-D-11-0117.1.
    Description: Evidence is presented for the transfer of energy from low-frequency inertial–diurnal internal waves to high-frequency waves in the band between 6 cpd and the buoyancy frequency. This transfer links the most energetic waves in the spectrum, those receiving energy directly from the winds, barotropic tides, and parametric subharmonic instability, with those most directly involved in the breaking process. Transfer estimates are based on month-long records of ocean velocity and temperature obtained continuously over 80–800 m from the research platform (R/P) Floating Instrument Platform (FLIP) in the Hawaii Ocean Mixing Experiment (HOME) Nearfield (2002) and Farfield (2001) experiments, in Hawaiian waters. Triple correlations between low-frequency vertical shears and high-frequency Reynolds stresses, uiw∂Ui/∂z, are used to estimate energy transfers. These are supported by bispectral analysis, which show significant energy transfers to pairs of waves with nearly identical frequency. Wavenumber bispectra indicate that the vertical scales of the high-frequency waves are unequal, with one wave of comparable scale to that of the low-frequency parent and the other of much longer scale. The scales of the high-frequency waves contrast with the classical pictures of induced diffusion and elastic scattering interactions and violates the scale-separation assumption of eikonal models of interaction. The possibility that the observed waves are Doppler shifted from intrinsic frequencies near f or N is explored. Peak transfer rates in the Nearfield, an energetic tidal conversion site, are on the order of 2 × 10−7 W kg−1 and are of similar magnitude to estimates of turbulent dissipation that were made near the ridge during HOME. Transfer rates in the Farfield are found to be about half the Nearfield values.
    Description: This work was supported by the National Science Foundation and the Office of Naval Research.
    Description: 2013-03-01
    Keywords: Diapycnal mixing ; Energy transport ; Internal waves ; Nonlinear dynamics ; Ship observations ; Spectral analysis/models/distribution
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 17–28, doi:10.1175/JPO-D-11-0108.1.
    Description: Observational evidence is presented for transfer of energy from the internal tide to near-inertial motions near 29°N in the Pacific Ocean. The transfer is accomplished via parametric subharmonic instability (PSI), which involves interaction between a primary wave (the internal tide in this case) and two smaller-scale waves of nearly half the frequency. The internal tide at this location is a complex superposition of a low-mode waves propagating north from Hawaii and higher-mode waves generated at local seamounts, making application of PSI theory challenging. Nevertheless, a statistically significant phase locking is documented between the internal tide and upward- and downward-propagating near-inertial waves. The phase between those three waves is consistent with that expected from PSI theory. Calculated energy transfer rates from the tide to near-inertial motions are modest, consistent with local dissipation rate estimates. The conclusion is that while PSI does befall the tide near a critical latitude of 29°N, it does not do so catastrophically.
    Description: This work was sponsored by NSF OCE 04-25283.
    Description: 2013-07-01
    Keywords: Diapycnal mixing ; Internal waves ; Nonlinear dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 880–895, doi:10.1175/2007JPO3750.1.
    Description: The oceanic response to overflows is explored using a two-layer isopycnal model. Overflows enter the open ocean as dense gravity currents that flow along and down the continental slope. While descending the slope, overflows typically double their volume transport by entraining upper oceanic water. The upper oceanic layer must balance this loss of mass, and the resulting convergent flow produces significant vortex stretching. Overflows thus represent an intense and localized mass and vorticity forcing for the upper ocean. In this study, simulations show that the upper ocean responds to the overflow-induced forcing by establishing topographic β plumes that are aligned more or less along isobaths and that have a transport that is typically a few times larger than that of the overflows. For the topographic β plume driven by the Mediterranean overflow, the occurrence of eddies near Cape St. Vincent, Portugal, allows the topographic β plume to flow across isobaths. The modeled topographic β-plume circulation forms two transatlantic zonal jets that are analogous to the Azores Current and the Azores Countercurrent. In other cases (e.g., the Denmark Strait overflow), the same kind of circulation remains trapped along the western boundary and hence would not be readily detected.
    Description: SK’s support during the time of his Ph.D. research in the MIT/WHOI Joint Program was provided by the National Science Foundation through Grant OCE04-24741. JP and JY have also received support from the Climate Process Team on Gravity Current Entrainment, NSF Grant OCE-0611530.
    Keywords: North Atlantic Ocean ; Mediterranean region ; Ocean models ; Mass fluxes/transport ; Diapycnal mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 133–145, doi:10.1175/2007JPO3782.1.
    Description: Five ice-tethered profilers (ITPs), deployed between 2004 and 2006, have provided detailed potential temperature θ and salinity S profiles from 21 anticyclonic eddy encounters in the central Canada Basin of the Arctic Ocean. The 12–35-m-thick eddies have center depths between 42 and 69 m in the Arctic halocline, and are shallower and less dense than the majority of eddies observed previously in the central Canada Basin. They are characterized by anomalously cold θ and low stratification, and have horizontal scales on the order of, or less than, the Rossby radius of deformation (about 10 km). Maximum azimuthal speeds estimated from dynamic heights (assuming cyclogeostrophic balance) are between 9 and 26 cm s−1, an order of magnitude larger than typical ambient flow speeds in the central basin. Eddy θ–S and potential vorticity properties, as well as horizontal and vertical scales, are consistent with their formation by instability of a surface front at about 80°N that appears in historical CTD and expendable CTD (XCTD) measurements. This would suggest eddy lifetimes longer than 6 months. While the baroclinic instability of boundary currents cannot be ruled out as a generation mechanism, it is less likely since deeper eddies that would originate from the deeper-reaching boundary flows are not observed in the survey region.
    Description: The engineering design work for the ITP was initiated by the Cecil H. and Ida M. Green Technology Innovation Program (an internal program at the Woods Hole Oceanographic Institution). Prototype development and construction were funded jointly by the U.S. National Science Foundation (NSF) Oceanographic Technology and Interdisciplinary Coordination Program and Office of Polar Programs (OPP) under Award OCE-0324233. Continued support has been provided by the OPP Arctic Sciences Section under Award ARC-0519899 and internal WHOI funding.
    Keywords: Arctic ; Eddies ; Profilers ; Stability ; Salinity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...