ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
  • Wiley-Blackwell  (5)
  • American Institute of Physics
  • 1
    Publication Date: 2021-06-22
    Description: The building materials of the Theatre of Marcellus, 44–11 BCE, reflect Roman builders’ careful selections of tuff and travertine for dimension stone and volcanic aggregates for pozzolanic concretes. The vitric–lithic–crystal Tufo Lionato tuff dimension stone contains a high proportion of lava lithic fragments, which increase its compressive strength and decrease water sorption, enhancing durability. Sophisticated installations of travertine dimension stone reinforce the tuff masonry, which is integrated with durable concrete walls and barrel vaults. The pozzolanic mortars of the concretes contain harenae fossiciae mainly from the intermediate alteration facies of the mid-Pleistocene, scoriaceous Pozzolane Rosse pyroclastic flow. They have pervasive interpenetrating pozzolanic cements, including strätlingite, similar to highquality, imperial era mortars. Concrete walls are faced with refined Tufo Lionato opus reticulatum and tufelli, and opus testaceum of fired, greyish-yellow brick. The exploratory concrete masonry, which includes some of the earliest examples of brick facings and strätlingite cements in Rome, and the integration of these materials in complex architectural elements and internal spaces, reflect the highly skilled workmanship, rigorous work-site management and technical supervision of Roman builders trained in republican era methods and materials.
    Description: Published
    Description: 728–742
    Description: JCR Journal
    Description: restricted
    Keywords: VOLCANIC TUFF MASONRY ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-04-07
    Description: Stable isotopes were measured in the carbonate and organic matter of palaeosols in the Somma–Vesuvius area, southern Italy in order to test whether they are suitable proxy records for climatic and ecological changes in this area during the past 18000 yr. The ages of the soils span from ca. 18 to ca. 3 kyr BP. Surprisingly, the Last Glacial to Holocene climate transition was not accompanied by significant change in d18O of pedogenic carbonate. This could be explained by changes in evaporation rate and in isotope fractionation between water and precipitated carbonate with temperature, which counterbalanced the expected change in isotope composition of meteoric water. Because of the rise in temperature and humidity and the progressive increase in tree cover during the Holocene, the Holocene soil carbonates closely reflect the isotopic composition of meteoric water. A cooling of about 2°C after the Avellino eruption (3.8 ka) accounts for a sudden decrease of about 1‰ in d18O of pedogenic carbonate recorded after this eruption. The d13C values of organic matter and pedogenic carbonate covary, indicating an effective isotope equilibrium between the organic matter, as the source of CO2, and the pedogenic carbonate. Carbon isotopes suggest prevailing C3 vegetation and negligible mixing with volcanogenic or atmospheric CO2.
    Description: Published
    Description: 813-824
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: stable isotope ; palaeosols ; Somma–Vesuvius ; palaeoclimate ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-03
    Description: Campi Flegrei collapse caldera (Italy) is a high-risk volcanic area located close to Naples and includes part of the densely populated city. This area is characterised by large up and down ground displacements. The last large uplift episode caused 3.5 m of cumulative vertical displacement at the centre of the town of Pozzuoli, during the period 1969–1984. Up and down ground movements in this area often occur without intercurring eruptions and are similar to what is observed at other calderas worldwide. Here, however, they appear more evident and amplified. Understanding the mechanism of such movements is crucial for hazard assessment and eruption forecast, mainly due to this densely populated area. This paper presents a detailed model for ground displacements due to deep fluid injection in shallower layers. Such a model explains in a natural way the occurrence of uplift and subsidence without eruptions. We show that it is possible to fit observed ground deformation in this area with a thermofluid dynamical model. The model obtained is also consistent with other observations like microgravity changes, changes in CO2 flux, etc. Here, we suggest that significant uplift and subsidence at calderas can be due to effects of deep fluid injections other than magma. At Campi Flegrei, however, a partial magmatic contribution at the origin of the observed episodes cannot be excluded.
    Description: Published
    Description: 833–847
    Description: JCR Journal
    Description: restricted
    Keywords: Numerical approximations and analysis; Hydrothermal systems; Explosive volcanism; Calderas ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The effect of pressure on melt viscosity was investigated for five compositions along the join An(CaAl2Si2O8)–Di(CaMgSi2O6) and four alkali silicates containing lithium, sodium, and potassium in constant ratio of ∼ 1:1:1, but alkali-silica ratios are varying. The experiments were performed in an internally heated gas pressure vessel at pressures from 50 to 400 MPa in the viscosity range from 108 to 1011.5 Pa⋅s using parallel plate viscometry. The polymerized An composition shows a negative pressure dependence of viscosity while the other, more depolymerized compositions of the join An–Di have neutral to positive pressure coefficients. The alkali silicates display neutral to slightly positive pressure coefficients for melt viscosity. These findings in the high viscosity range of 108–1011 Pa⋅s, where pressure appears to be more efficient than in low viscous melts at high temperature, are consistent with previous results on the viscosity of polymerized to depolymerized melts in the system NaAlSi3O8–CaMgSi2O6 by Behrens and Schulze [ H. Behrens and F. Schulze, Am. Mineral. 88, 1351 (2003) ]. Thus we confirm that the sign of the pressure coefficient for viscosity is mainly related to the degree of melt polymerization in silicate and aluminosilicate melts.
    Description: DFG Grant n.°BE1720/9
    Description: Published
    Description: 044504-14
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: open
    Keywords: viscosity ; polymerisation ; anorthite ; diopside ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-12-15
    Description: Some of the most structurally innovative concrete vaults built in imperial Rome employed lightweight volcanic rocks to reduce the lateral thrust on the supporting walls, the most famous being the Pantheon. Roman concrete (opus caementicium) was made up of mortar binding together pieces of large aggregate (caementa) usually ranging from 10 to 20 cm long, which were hand laid in the mortar (as opposed to being poured as is typical in modern concrete), so that it resembles mortared rubble. A key aspect of the development of large-scale concrete vaulting was the ability to regulate the weight of the ingredients in order to reduce the weight of the vaults and to control the forces within the structure. The volcanic environment along the west coast of Italy provided numerous stones of different weights and physical properties from which the builders could choose (Fig. 1), including pumice and scoria, which were the most common choices for the lightweight caementa of the most innovative vaulted structures. Because these materials were produced by many of the Italian volcanoes, our goal was to establish the provenance of those used in vaults in Rome in order to understand better the supply network. We first used thin sections to narrow the potential sources and then we submitted selected samples to X-ray fluorescence
    Description: Published
    Description: 707-727
    Description: JCR Journal
    Description: restricted
    Keywords: concrete vault ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-24
    Description: This study investigates in detail the deformation events that have affected the sedimentary successions forming the substrate of Mt. Etna volcano (Italy). Based on the geometric reconstruction of a buried sedimentary marker, we have been able to identify and quantify the effects of three different mechanisms of deformation that have affected the area in the last 600 ka. Numerical results from Finite Element Method (FEM) applied to model viscoelastic deformation suggest the occurrence of a crustal doming process originating at the mantle-crust transition (~16 km). We propose that the source of deformation is related to the diapiric uprise of hydrothermal material originating in altered ocean-like crust and its emplacement at a shallower level in the crust. This process has great relevance in the volcanic system and should be considered for the full assessment of its origin and evolution.
    Description: Published
    Description: 338 – 345
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: volcanic doming ; viscoelastic modeling ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...