ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • grazing-incidence small-angle X-ray scatteringGISAXSbeam footprintlithographic inspectiongratings  (2)
  • Bayesian particle polishingbeam-induced motion correctioncryo-EMsingle-particle analysiselectron cryo-microscopy  (1)
  • International Union of Crystallography (IUCr)  (3)
  • American Institute of Physics
Collection
Keywords
Publisher
  • International Union of Crystallography (IUCr)  (3)
  • American Institute of Physics
Years
  • 1
    Publication Date: 2018-11-09
    Description: A new method to estimate the trajectories of particle motion and the amount of cumulative beam damage in electron cryo-microscopy (cryo-EM) single-particle analysis is presented. The motion within the sample is modelled through the use of Gaussian process regression. This allows a prior likelihood that favours spatially and temporally smooth motion to be associated with each hypothetical set of particle trajectories without imposing hard constraints. This formulation enables the a posteriori likelihood of a set of particle trajectories to be expressed as a product of that prior likelihood and an observation likelihood given by the data, and this a posteriori likelihood to then be maximized. Since the smoothness prior requires three parameters that describe the statistics of the observed motion, an efficient stochastic method to estimate these parameters is also proposed. Finally, a practical algorithm is proposed that estimates the average amount of cumulative radiation damage as a function of radiation dose and spatial frequency, and then fits relative B factors to that damage in a robust way. The method is evaluated on three publicly available data sets, and its usefulness is illustrated by comparison with state-of-the-art methods and previously published results. The new method has been implemented as Bayesian polishing in RELION-3, where it replaces the existing particle-polishing method, as it outperforms the latter in all tests conducted.
    Keywords: Bayesian particle polishingbeam-induced motion correctioncryo-EMsingle-particle analysiselectron cryo-microscopy
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-26
    Description: An error in the paper by Pflüger, Soltwisch, Probst, Scholze & Krumrey [IUCrJ (2017), 431–438] is corrected.
    Keywords: grazing-incidence small-angle X-ray scatteringGISAXSbeam footprintlithographic inspectiongratings
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-05-25
    Description: Grazing-incidence small-angle X-ray scattering (GISAXS) is often used as a versatile tool for the contactless and destruction-free investigation of nanostructured surfaces. However, due to the shallow incidence angles, the footprint of the X-ray beam is significantly elongated, limiting GISAXS to samples with typical target lengths of several millimetres. For many potential applications, the production of large target areas is impractical, and the targets are surrounded by structured areas. Because the beam footprint is larger than the targets, the surrounding structures contribute parasitic scattering, burying the target signal. In this paper, GISAXS measurements of isolated as well as surrounded grating targets in Si substrates with line lengths from 50 µm down to 4 µm are presented. For the isolated grating targets, the changes in the scattering patterns due to the reduced target length are explained. For the surrounded grating targets, the scattering signal of a 15 µm × 15 µm target grating structure is separated from the scattering signal of 100 µm × 100 µm nanostructured surroundings by producing the target with a different orientation with respect to the predominant direction of the surrounding structures. As virtually all lithographically produced nanostructures have a predominant direction, the described technique allows GISAXS to be applied in a range of applications, e.g. for characterization of metrology fields in the semiconductor industry, where up to now it has been considered impossible to use this method due to the large beam footprint.
    Keywords: grazing-incidence small-angle X-ray scatteringGISAXSbeam footprintlithographic inspectiongratings
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...