ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions  (4)
  • Geological Society of London  (2)
  • Blackwell Science Ltd  (1)
  • American Institute of Physics
  • Nature Publishing Group
Collection
Years
  • 1
    Publication Date: 2020-11-26
    Description: We describe the evolution of the volcanic activity and deformation patterns observed at Mount Etna during the July–August 2001 eruption. Seismicity started at 3000 m below sea level on 13 July, accompanied by moderate ground swelling. Ground deformation culminated on 16 July with the development of a NE–SW graben c. 500 m wide and c. 1 m deep in the Cisternazza area at 2600–2500 m above sea level on the southern slope of the volcano. On 17 July, the eruption started at the summit of Mount Etna from the SE Crater (central–lateral eruptive system), from which two radial, c. 30 m wide, c. 3000 m long fracture zones, associated with eruptive fissures, propagated both southward (17 July) and northeastward (20 July). On 18 July, a new vent formed at 2100 m elevation, at the southern base of the Montagnola, followed on the next day by the opening of a vent further upslope, at 2550 m (eccentric eruptive system). The eruption lasted for 3 weeks. Approximately 80% of the total lava volume was erupted from the 2100 m and the 2550 m vents. The collected structural data suggest that the Cisternazza graben developed as a passive local response of the volcanic edifice to the ascent of a north–south eccentric dyke, which eventually reached the ground surface in the Montagnola area (18–19 July). In contrast, the two narrow fracture zones radiating from the summit are interpreted as the lateral propagation, from the conduit of the SE Crater, of north–south- and NE–SW-oriented shallow dykes, 2–3 m wide. The evolution of the fracture pattern together with other volcanological data (magma ascent and effusion rate, eruptive style, petrochemical characteristics of the erupted products, and petrology of xenoliths within magma) suggest that the eccentric and central–lateral eruptions were fed by two distinct magmatic systems. Examples of eccentric activity accompanied by central–lateral events have never been described before at Etna.
    Description: Published
    Description: 531-544
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Mount Etna ; July–August 2001 Eruption ; magmas ; dykes ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: This paper documents a phreatomagmatic ¯ank eruption that occurred 18 700 100 a BP, on the lower north-eastern slope of Etna during the Ellittico volcano activity, which produced fall and surge deposits. This type of eruption is connected to a sedimentary basement ridge at Etna. The interaction between the rising magma and the shallow groundwater hosted in the volcanic pile overlying the impermeable sediments resulted in phreatomagmatic instead of strombolian activity. Three eruptive phases are distinguished based on ®eld and analytical data: (i) an explosive phreatomagmatic opening, (ii) a main phase producing coarse lithic-rich fallout and a strombolian deposit, and (iii) the ®nal pulsating surge-forming phase. The discovery of this phreatomagmatic ¯ank eruption, which occurred at lower altitude, raises important issues for previous hazard assessments at Etna.
    Description: University of Catania
    Description: Published
    Description: 235-240
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; phreatomagmatic eruption ; hazard assessment ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Although controversy exists about the age of its most recent eruption (either 36 ka or ,23 ka), Colli Albani volcano is unanimously considered to be quiescent and not exinct. During the Holocene, several lahars were generated by overflows from Albano crater lake up to the fourth century BCE, when the Romans excavated a drainage tunnel to keep the lake level below the crater rim. Such recent activity, together with the frequent occurrence of seismic swarms underneath the crater zone, the ongoing uplift of the volcanic edifice and the magmatic affinity of the emitted gas, indicate the presence of an active magma chamber. The most likely site for a new eruption is the deep crater hosted in the southern part of the Lake Albano, where the last eruptive events occurred. Any eruption would have a strong explosive character enhanced by the interaction of magma with the water of the lake and would endanger a densely inhabited area up to the outskirts of Rome. The hazard of a new overflow from Lake Albano is very low because of the present low level of the lae. There is instead a potential for CO2 release from the deep lake water following the occurrence of rollovers, which would threaten the lake shore, a site where thousands of people spend their vacations in the summer. However, the content of dissolved CO2 is presently far from saturation and no Nyos-type events will occur today. Presently, the main hazard is related to strong gas emissions (CO2, H2S and Rn) from fractured zones and gas blowouts from wells reaching shallow gas-pressurized aquifers.
    Description: Published
    Description: 279 – 297
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: reserved
    Keywords: Colli Albani, volcanic hazard ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: In this paper, we describe the 1809 eruption of Mt. Etna, Italy, which represents one historical rare case in which it is possible to observe details of the internal structure of the feeder system. This is possible thanks to the presence of two large pit craters located in the middle of the eruptive fracture field that allow studying a section of the shallow feeder system. Along the walls of one of these craters, we analysed well-exposed cross sections of the uppermost 15–20 m of the feeder system and related volcanic products. Here, we describe the structure, morphology and lithology of this portion of the 1809 feeder system, including the host rock which conditioned the propagation of the dyke, and compare the results with other recent eruptions. Finally, we propose the dynamic model of the magma behaviour inside a laterally-propagating feeder dyke, demonstrating how this dynamic triggered important changes in the eruptive style (from effusive/Strombolian to phreatomagmatic) during the same eruption. Our results are also useful for hazard assessment related to the development of flank eruptions, potentially the most hazardous type of eruption from basaltic volcanoes in densely urbanized areas, such as Mt. Etna.
    Description: Published
    Description: 1-11
    Description: 2T. Tettonica attiva
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: N/A or not JCR
    Description: open
    Keywords: feeder dyke ; basaltic volcanoes ; flank eruptions ; Etna ; volcanic hazards ; sill ; volcanic rift ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...