ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-05-09
    Description: New high-resolution bathymetric and magnetic data from the western Aeolian sector, southern Tyrrhenian Sea, provide insights into structural and volcanic development of the area, suggesting a strong interaction between volcanism and tectonics. The analysis of these data combined with relocated earthquake distribution, focal plane solutions and strain rate evaluation indicates that the dextral strike-slip Sisifo-Alicudi shear zone is a complex and wide area of active deformation, representing the superficial expression of the deep seated lithospheric tear fault separating the subduction slab below Sicily and Calabria. Most of the observed volcanic features are aligned along a NW–SE trend, such as the Filicudi island-Alicudi North Seamount and Eolo-Enarete alignments, and are dissected by hundred-metre-high scarps along conjugate NNE–SSW trending fault systems. The magnetic field pattern matches the main trends of volcanic features. Spectral analysis and Euler deconvolution of magnetic anomalies show the existence of both deep and shallow sources. High-amplitude, high-frequency anomalies due to shallow sources are dominant close to the volcanic edifices of Alicudi and Filicudi, while the main contribution on the surrounding Eolo, Enarete, Alicudi North and Filicudi North seamounts is given by low-amplitude anomalies and/or deeper magnetic sources. This is probably related to different ages of the volcanic rocks, although hydrothermal processes may have played an important role in blanketing magnetic anomalies, in particular at Enarete and Eolo seamounts. Relative chronology of the eruptive centres and the inferred deformation pattern outline the Quaternary evolution of the western Aeolian Arc: Sisifo, Alicudi North and Filicudi North seamounts might have developed in an early stage, following the Late Pliocene–Early Pleistocene SE-ward migration of arc-related volcanism due to the Ionian subduction hinge retreat; Eolo, Enarete and Filicudi represent later manifestations that led volcanoes to develop duringMid-Late Pleistocene, when the stress regime in the area changed, due to the SSE-ward propagation of the subduction slab tear fault and the consequent reorientation and decrease of trench migration velocity. Finally, volcanic activity occurred in a very short time span at Alicudi, where an almost conical volcanic edifice emerged, suggesting negligible interactions with regional fault systems.
    Description: Published
    Description: 64-78
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: 3.4. Geomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Magnetic anomalies ; Seismicity ; volcanic arc process ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcs
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-09
    Description: On April 6, 2009, an Mw 6.3 earthquake struck the town of L’Aquila in the Abruzzo region in central Italy. It was followed by a long seismic crisis with other four events with Mw between 5.1 and 5.6. Seismological and geological data point out an upper crust extensional stress field with an average WSW-ENE tensional axis. In the course of the seismic sequence, two distinct en échelon fault sources were activated: first, the SW-dipping Paganica normal fault, which is associated with the Mw 6.3 event; and, subsequently, the southern part of the WSW-dipping Gorzano normal fault.Co-seismic ground deformation (open fissures, en échelon cracks and shear planes with centimetric downthrows) was surveyed for ~ 13 km along the Paganica fault. The integration of the information from this last Italian earthquake with the previous seismotectonic background has allowed us to further detail the 3-D shape and the size of some of the individual seismogenic sources of the Apennine active extensional belt.
    Description: Published
    Description: 1-17
    Description: 2T. Tettonica attiva
    Description: restricted
    Keywords: L’Aquila, Apennines, central Italy ; seismogenic source ; normal fault ; fault segmentation ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-20
    Description: The Longmenshan fault that ruptured during the 2008 Mw 7.9 Wenchuan (China) earthquake was drilled to a depth of 1200 m, and fault rocks including those in the 2008 earthquake slip zone were recovered at a depth of 575–595 m. We report laboratory strength measurements and microstructural observations from samples of slip zone fault rocks at deformation conditions expected for coseismic slip at borehole depths. Results indicate that the Longmenshan fault at this locality is extremely weak at seismic slip rates. In situ synchrotron X-ray diffraction analysis indicates that graphite was formed along localized slip zones in the experimental products, similar to the occurrence of graphite in the natural principal slip zone of the 2008 Wenchuan rupture. We surmise that graphitization occurred due to frictional heating of carbonaceous minerals. Because graphitization was associated with strong dynamic weakening in the experiments, we further infer that the Longmenshan fault was extremely weak at borehole depths during the 2008 Wenchuan earthquake, and that enrichment of graphite along localized slip zones could be used as an indicator of transient frictional heating during seismic slip in the upper crust.
    Description: Published
    Description: 47-50
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: reserved
    Keywords: Wenchuan ; drilling project ; Earthquakes ; Rock mechanics ; 04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocks ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-01
    Description: This deliverable contains three different products: one table with reclassified slip rate data from DISS, one table with slip rate values calculated from numerical models, and two study cases that illustrate the applications of original methods to estimate slip rate.
    Description: Agreement INGV-DPC 2007-2009 Project S1: Analysis of the seismic potential in Italy for the evaluation of the seismic hazard
    Description: Published
    Description: 3.2. Tettonica attiva
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: open
    Keywords: DISS ; slip rate ; active fault ; seismogenic source ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-01
    Description: We present a reconstruction of the central Marche thrust system in the central-northern Adriatic domain aimed at constraining the geometry of the active faults deemed to be potential sources of moderate to large earthquakes in this region and at evaluating their long-term slip rates. This system of contractional structures is associated with fault-propagation folds outcropping along the coast or buried in the offshore that have been active at least since about 3Myr. The ongoing deformation of the coastal and offshore Marche thrust system is associated with moderate historical and instrumental seismicity and recorded in sedimentary and geomorphic features. In this study, we use subsurface data coming from both published and original sources. These comprise cross-sections, seismic lines, subsurface maps and borehole data to constrain geometrically coherent local 3D geological models, with particular focus on the Pliocene and Pleistocene units. Two sections crossing five main faults and correlative anticlines are extracted to calculate slip rates on the driving thrust faults. Our slip rate calculation procedure includes a) the assessment of the onset time which is based on the sedimentary and structural architecture, b) the decompaction of clastic units where necessary, and c) the restoration of the slip on the fault planes. The assessment of the differential compaction history of clastic rocks eliminates the effects of compaction-induced subsidence which determine unwanted overestimation of slip rates. To restore the displacement along the analyzed structures, we use two different methods on the basis of the deformation style: the fault parallel flow algorithm for faulted horizons and the trishear algorithm for fault-propagation folds. The time of fault onset ranges between 5.3-2.2 Myr; overall the average slip rates of the various thrusts are in the range of 0.26-1.35 mm/yr.
    Description: Published
    Description: 122-134
    Description: 3.2. Tettonica attiva
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: open
    Keywords: slip rate ; 3D geological model ; structural restoration ; seismogenic source ; thrust tectonics ; northern Apennines ; Adriatic Sea ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-06-12
    Description: On 23 July 1930, the Irpinia region in southern Italy experienced a destructive (M 6.7) earthquake that struck the eastern sector of the southern Apennines moutain belt. Previous studies suggest that this earthquake was caused by a seismogenic source having oblique right-lateral kinematics and striking at an angle between the general trend of NE-verging large dip-slip faults in the southern Apennines (~ NW-SE) and the E-W near-vertical, strike-slip right lateral faults that have been recently discovered in the foreland, east of the main extensional axis. Also, the ~14 km hypocentral depth of the 1930 earthquake that has been calculated in previous studies is likely located within the basement below the Apula carbonate platform succession. This puts the source of the 1930 earthquake not only in an intermediate region between pure normal (NW-SE) and strike-slip right-lateral (E-W) large seismogenic faults in the southern Apennines, but also at an hypocentral depth between the 12-13 km depth of the earthquakes caused by normal faulting (like the Irpinia 23 Nov. 1980, M 6.9 one) and the 15-20 km depth of the earthquakes caused by strike-slip faulting in the foreland (like the 31 Oct.-1 Nov. 2002, M 5.8 Molise ones). In this framework, we performed a magnetotelluric (MT) study to investigate the evidence of preferential direction in resistivity anisotropy and to compare it with the strike of the 1930 seismogenic fault.
    Description: Unpublished
    Description: Oslo, Norway
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: irpinia ; magnetotellurics ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-09-08
    Description: The 2013 European Seismic Hazard Model (ESHM13) results from a community-based probabilistic seismic hazard assessment supported by the EU-FP7 project “Seismic Hazard Harmonization in Europe” (SHARE, 2009–2013). The ESHM13 is a consistent seismic hazard model for Europe and Turkey which overcomes the limitation of national borders and includes a through quantification of the uncertainties. It is the first completed regional effort contributing to the “Global Earthquake Model” initiative. It might serve as a reference model for various applications, from earthquake preparedness to earthquake risk mitigation strategies, including the update of the European seismic regulations for building design (Eurocode 8), and thus it is useful for future safety assessment and improvement of private and public buildings. Although its results constitute a reference for Europe, they do not replace the existing national design regulations that are in place for seismic design and construction of buildings. The ESHM13 represents a significant improvement compared to previous efforts as it is based on (1) the compilation of updated and harmonised versions of the databases required for probabilistic seismic hazard assessment, (2) the adoption of standard procedures and robust methods, especially for expert elicitation and consensus building among hundreds of European experts, (3) the multi-disciplinary input from all branches of earthquake science and engineering, (4) the direct involvement of the CEN/TC250/SC8 committee in defining output specifications relevant for Eurocode 8 and (5) the accounting for epistemic uncertainties of model components and hazard results. Furthermore, enormous effort was devoted to transparently document and ensure open availability of all data, results and methods through the European Facility for Earthquake Hazard and Risk (www.​efehr.​org).
    Description: Published
    Description: 3553-3596
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: Probabilistic seismic hazard assessment ; Uncertainty analysis ; Earthquake engineering ; Logic-tree ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-08-25
    Description: The city of Florence possesses a concentration of cultural and artistic treasures which is unique in the world. In this sense it has a particularly high seismic exposure and a potentially high vulnerability. In order to better evaluate its seismic hazard and risk, we analyzed the seismic response of the urban area of Florence by performing a multidisciplinary study on the effects of earthquakes on the city. By a computer aided methodology we re-evaluated the seismic intensity reports of the May 18 and June 6, 1895 earthquakes in different parts of the city and compared these data with recent studies on surface geology, active tectonics and actual fault movements in the Florence basin. We concluded that more detailed studies of soil response are needed to form a basis for public policy.
    Description: Published
    Description: 2313-2332
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: surface geology ; tectonics ; historical earthquakes ; Macroseismic data ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-08-25
    Description: We examine the tectonic evolution and structural characteristics of the Quaternary intermontane Mugello, Casentino, and Sansepolcro basins, in the Northern Apennines fold-andthrust belt. These basins have been classically interpreted to have developed under an extensional regime, and to mark the extension-compression transition. The results of our study have instead allowed framing the formation of these basins into a compressive setting tied to the activity of backthrust faults at their northeastern margin. Syndepositional activity of these structures is manifested by consistent architecture of sediments and outcrop-scale deformation. After this phase, the Mugello and Sansepolcro basins experienced a phase of normal faulting extending from the middle Pleistocene until Present. Basin evolution can be thus basically framed into a two-phase history, with extensional tectonics superposed onto compressional structures. Analysis of morphologic features has revealed the occurrence of fresh fault scarps and interaction of faulting with drainage systems, which have been interpreted as evidence for potential ongoing activity of normal faults. Extensional tectonics is also manifested by recent seismicity, and likely caused the strong historical earthquakes affecting the Mugello and Sansepolcro basins. Qualitative comparison of surface information with depth-converted seismic data suggests the basins to represent discrete subsiding areas within the seismic belt extending along the axial zone of the Apennines. The inferred chronology of deformation and the timing of activity of normal faults have an obvious impact on the elaboration of seismic hazard models.
    Description: Published
    Description: 336-356
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Description: open
    Keywords: Northern Apennines ; Basin evolution ; structural analysis ; active tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-08-25
    Description: The source of the famous 1 November, 1755 ‘‘Lisbon’’ earthquake has been constrained to be an up to 200 km long structure in the offshore west of Cabo de S. Vincente.The magnitude of this earthquake was estimated in the range of 8.5–9.4. The stress regime argued for this shock would have been characterised by an around NNW–SSE-oriented compression.Less well studied is the successive ‘‘Meknes’’ earthquake, which occurred a few days later in Morocco (27 November), and was erroneously confused by the European contemporary reports with a strong aftershock, occurred on 18 November, of the main seismic sequence of the 1 November earthquake.The Meknes earthquake had destructive effects in the region of Meknes and Fes and along the E–W trending Rides Pre´rifaines, the main frontal thrust of the Rif.Historical data indicate a macroseismic field closed around the towns of Meknes and Fes. Our structural–geological fieldwork and remote sensing analysis in the epicentral area of the Meknes earthquake, along the local major recent faults, indicate that the E–W-oriented thrusts of the Rides Pre´- rifaines are active.Throu gh a re-examination of historical sources compared with field work and air photo interpretation, we could individuate the traces of coseismic surface faulting of the 1755 Meknes earthquake in two areas of the Rides Pre´rifaines, both part of the local thrust front: the Jebel Zerhoun area and the Jebel Zalagh area.Tectonic data on the Quaternary stress fields derived from our fieldwork and from literature, consistently with the revised focal mechanisms in the region, indicate active shortening oriented NNW–SSE to N–S in northern Morocco.The data collected seem therefore to indicate the thrusts of the Rides Pre´rifaines, located within the macroseismic area of the Meknes earthquake, as the most probable seismic source of that event.As such, the activation of the thrusts of the Rides Pre´rifaines would be consistent with this stress regime, which in turn would be similar to the stress field maintained as responsible for the 1 November, 1755 Lisbon earthquake.W e also attempted an estimate of the change due to the Lisbon earthquake of the Coulomb Failure Function (CFF) on the Meknes structure, as identified in this paper, in order to evaluate if the Meknes earthquake could have been induced by the 1 November, 1755 Lisbon earthquake, or a local distinct earthquake.Our modelling suggests that the latter hypothesis is the more likely one.
    Description: Published
    Description: 305-322
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Active tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...