ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics  (3)
  • 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
  • IEEE  (2)
  • Nature Publishing Group  (2)
  • American Chemical Society (ACS)
  • 1
    Publication Date: 2020-11-18
    Description: The anomaly of SLHF, which is a key component of the Earth's energy balance and represents the heat flux from the Earth's surface to the atmosphere associated with evaporation or transpiration of water on the surface and subsequent condensation of water vapor in the troposphere, has been widely reported as a possible earthquake precursor. The causes are generally attributed to the increase in infrared thermal (IR) temperature and the air ionization produced by increased emanation of radon from the Earth's crust. In this paper, the theoretical analysis and case study show that there is close relationship between soil moisture and SLHF anomalies. For inland earthquakes, the increase of soil moisture due to the rising of groundwater level will bring with higher potential evaporation, leading to the increase of latent heat flux. Further study with more accurate soil moisture product after the new satellite mission will help us to better understand the influence of soil moisture on SLHF variation and their relations with seismogenic process.
    Description: Published
    Description: Munich, Germany
    Description: 1.10. TTC - Telerilevamento
    Description: 3.1. Fisica dei terremoti
    Description: restricted
    Keywords: earthquake anomaly recognition (EAR) ; SLHF ; soil moisture lithosphere-coversphere-atmosphere (LCA) coupling ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-18
    Description: The GEOSS under construction is providing space-,aero-,ground/sea-based multiple observations on planet Earth for the seismogenic process monitoring and earthquake precaution. The stress enhancement and energy accumulation in seismic activity area change locally the physical parameters of lithosphere with the developing of a series of effects that can comprise most of the following ones: initial cracks, the fracturing of rockmass, the changing of electromagnetic properties, the decreasing of dielectric constant, the re-activation of P-holes, the leaking of poregas, and the rise of water-level. The physical states of coversphere and atmosphere are to be affected due to the lithosphere-coversphere-atmosphere (LCA) coupling, and the signals from the underground, surface, and atmosphere to satellites are to be changed with parameter anomaly. We suggested that the LCA coupling is important for understanding GEOSS observations, especially for earthquake anomaly recognition (EAR). Using deviation-time-space-thermal (DTS-T) method for EAR, three recent major earthquakes (2009 Italy L'Aquila earthquake, 2010 China Yushu earthquake and 2010-2011 New Zealand earthquake sequence) are taken as typical cases for analysis to the multi-parameters anomalies, preceding the shocking, with quasi-synchronism and geoconsistency. The specific LCA coupling effects related with the earthquakes are also discussed in brief.
    Description: Published
    Description: Munich, Germany
    Description: 1.10. TTC - Telerilevamento
    Description: 3.1. Fisica dei terremoti
    Description: restricted
    Keywords: earthquake anomaly recognition (EAR) ; GEOSS ; lithosphere-coversphere-atmosphere (LCA) coupling ; multiple parameters ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The MW 8.8 mega-thrust earthquake and tsunami that occurred on February 27, 2010, offshore Maule region, Chile, was not unexpected. A clearly identified seismic gap existed in an area where tectonic loading has been accumulating since the great 1835 earthquake experienced and described by Darwin during the voyage of the Beagle. Here we jointly invert tsunami and geodetic data (InSAR, GPS, land-level changes), to derive a robust model for the co-seismic slip distribution and induced co-seismic stress changes, and compare them to past earthquakes and the pre-seismic locking distribution. We aim to assess if the Maule earthquake has filled the Darwin gap, decreasing the probability of a future shock . We find that the main slip patch is located to the north of the gap, overlapping the rupture zone of the MW 8.0 1928 earthquake, and that a secondary concentration of slip occurred to the south; the Darwin gap was only partially filled and a zone of high pre-seismic locking remains unbroken. This observation is not consistent with the assumption that distributions of seismic rupture might be correlated with pre-seismic locking, potentially allowing the anticipation of slip distributions in seismic gaps. Moreover, increased stress on this unbroken patch might have increased the probability of another major to great earthquake there in the near future.
    Description: Published
    Description: 173-177
    Description: 3.1. Fisica dei terremoti
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: restricted
    Keywords: Source process ; Chile ; Tsunami ; Joint Inversion ; Seismic Gap ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The 2011 Tohoku-oki (Mw 9.1) earthquake is so far the best-observed megathrust rupture, which allowed the collection of unprecedented offshore data. The joint inversion of tsunami waveforms (DART buoys, bottom pressure sensors, coastal wave gauges, and GPS-buoys) and static geodetic data (onshore GPS, seafloor displacements obtained by a GPS/acoustic combination technique), allows us to retrieve the slip distribution on a non-planar fault. We show that the inclusion of near-source data is necessary to image the details of slip pattern (maximum slip ,48 m, up to ,35 m close to the Japan trench), which generated the large and shallow seafloor coseismic deformations and the devastating inundation of the Japanese coast. We investigate the relation between the spatial distribution of previously inferred interseismic coupling and coseismic slip and we highlight the importance of seafloor geodetic measurements to constrain the interseismic coupling, which is one of the key-elements for long-term earthquake and tsunami hazard assessment.
    Description: Published
    Description: 385
    Description: 3.1. Fisica dei terremoti
    Description: N/A or not JCR
    Description: restricted
    Keywords: Tohoku ; Subduction ; Tsunami ; Inverse problem ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...