ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ddc:631.4  (15)
  • ddc:579.8  (3)
  • Blackwell Publishing Ltd  (14)
  • Hoboken, USA  (4)
  • American Chemical Society (ACS)
  • 1
    Publication Date: 2022-04-01
    Description: The interaction between the land surface and the atmosphere is a crucial driver of atmospheric processes. Soil moisture and precipitation are key components in this feedback. Both variables are intertwined in a cycle, that is, the soil moisture – precipitation feedback for which involved processes and interactions are still discussed. In this study the soil moisture – precipitation feedback is compared for the sempiternal humid Ammer catchment in Southern Germany and for the semiarid to subhumid Sissili catchment in West Africa during the warm season, using precipitation datasets from the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), from the German Weather Service (REGNIE) and simulation datasets from the Weather Research and Forecasting (WRF) model and the hydrologically enhanced WRF‐Hydro model. WRF and WRF‐Hydro differ by their representation of terrestrial water flow. With this setup we want to investigate the strength, sign and variables involved in the soil moisture – precipitation feedback for these two regions. The normalized model spread between the two simulation results shows linkages between precipitation variability and diagnostic variables surface fluxes, moisture flux convergence above the surface and convective available potential energy in both study regions. The soil moisture – precipitation feedback is evaluated with a classification of soil moisture spatial heterogeneity based on the strength of the soil moisture gradients. This allows us to assess the impact of soil moisture anomalies on surface fluxes, moisture flux convergence, convective available potential energy and precipitation. In both regions the amount of precipitation generally increases with soil moisture spatial heterogeneity. For the Ammer region the soil moisture – precipitation feedback has a weak negative sign with more rain near drier patches while it has a positive signal for the Sissili region with more rain over wetter patches. At least for the observed moderate soil moisture values and the spatial scale of the Ammer region, the spatial variability of soil moisture is more important for surface‐atmosphere interactions than the actual soil moisture content. Overall, we found that soil moisture heterogeneity can greatly affect the soil moisture – precipitation feedback.
    Description: WRF and WRF‐hydro model simulations are used to determine the sign and analyse the mechanisms of the soil moisture ‐ precipitation feedback for the sempiternal humid Ammer catchment in Southern Germany and for the semiarid to subhumid Sissili catchment in West Africa during the warm season. The generation of moist convection is favoured over surfaces with moderately high soil moisture gradients in the Ammer region, while for the Sissili region the location of precipitation tends to be related to areas with high soil moisture gradients. For the Ammer region the soil moisture – precipitation feedback has a weak negative sign with more rain near drier patches while it has a positive signal for the Sissili region with more rain over wetter patches.
    Description: Untersuchung des Klimas des südlichen Afrikas – ein Brückenschlag vom frühen Holozän bis heute
    Description: Transregional Collaborative Research Center
    Keywords: ddc:551.57 ; ddc:631.4
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-04-01
    Description: In designed experiments, different sources of variability and an adequate scale of measurement need to be considered, but not all approaches in common usage are equally valid. In order to elucidate the importance of sources of variability and choice of scale, we conducted an experiment where the effects of biochar and slurry applications on soil properties related to soil fertility were studied for different designs: (a) for a field‐scale sampling design with either a model soil (without natural variability) as an internal control or with composited soils, (b) for a design with a focus on amendment variabilities, and (c) for three individual field‐scale designs with true field replication and a combined analysis representative of the population of loess‐derived soils. Three silty loam sites in Germany were sampled and the soil macroaggregates were crushed. For each design, six treatments (0, 0.15 and 0.30 g slurry‐N kg−1 with and without 30 g biochar kg−1) were applied before incubating the units under constant soil moisture conditions for 78 days. CO2 fluxes were monitored and soils were analysed for macroaggregate yields and associated organic carbon (C). Mixed‐effects models were used to describe the effects. For all soil properties, results for the loess sites differed with respect to significant contributions of fixed effects for at least one site, suggesting the need for a general inclusion of different sites. Analysis using a multilevel model allowed generalizations for loess soils to be made and showed that site:slurry:biochar and site:slurry interactions were not negligible for macroaggregate yields. The use of a model soil as an internal control enabled observation of variabilities other than those related to soils or amendments. Experiments incorporating natural variability in soils or amendments resulted in partially different outcomes, indicating the need to include all important sources of variability. Highlights Effects of biochar and slurry applications were studied for different designs and mixed‐effects models were used to describe the effects. Including an internal control allowed observation of, e.g., methodological and analytical variabilities. The results suggested the need for a general inclusion of different sites. Analysis using a multilevel model allowed generalizations for loess soils. The results indicated the need to include all important sources of variability.
    Keywords: ddc:631.4
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-30
    Description: Cell size is a master trait in the functional ecology of phytoplankton correlating with numerous morphological, physiological, and life‐cycle characteristics of species that constrain their nutrient use, growth, and edibility. In contrast to well‐known spatial patterns in cell size at macroecological scales or temporal changes in experimental contexts, few data sets allow testing temporal changes in cell sizes within ecosystems. To analyze the temporal changes of intraspecific and community‐wide cell size, we use the phytoplankton data derived from the Lower Saxony Wadden Sea monitoring program, which comprises sample‐ and species‐specific measurements of cell volume from 1710 samples collected over 14 yr. We find significant reductions in both the cell volume of most species and the weighted mean cell size of communities. Mainly diatoms showed this decline, whereas the size of dinoflagellates seemed to be less responsive. The magnitude of the trend indicates that cell volumes are about 30% smaller now than a decade ago. This interannual trend is overlayed by seasonal cycles with smaller cells typically observed in summer. In the subset of samples including environmental conditions, small community cell size was strongly related to high temperatures and low total phosphorus concentration. We conclude that cell size captures ongoing changes in phytoplankton communities beyond the changes in species composition. In addition, based on the changes in species biovolumes revealed by our analysis, we warn that using standard cell size values in phytoplankton assessment will not only miss temporal changes in size, but also lead to systematic errors in biomass estimates over time.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Interreg V A program Deutschland‐Nederland of the European Union
    Description: Niedersächsisches Ministerium für Wissenschaft und Kultur http://dx.doi.org/10.13039/501100010570
    Description: https://doi.org/10.5281/zenodo.5799263
    Keywords: ddc:579.8 ; ddc:577.2
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    John Wiley & Sons, Inc. | Hoboken, USA
    Publication Date: 2022-08-05
    Description: The end of the polar night with the concurrent onset of photosynthetic biomass production ultimately leads to the spring bloom, which represents the most important event of primary production for the Arctic marine ecosystem. This dataset shows, for the first time, significant in situ biomass accumulation during the dark–light transition in the high Arctic, as well as the earliest recorded positive net primary production rates together with constant chlorophyll a‐normalized potential for primary production through winter and spring. The results indicate a high physiological capacity to perform photosynthesis upon re‐illumination, which is in the same range as that observed during the spring bloom. Put in context with other data, the results of this study indicate that also active cells originating from the low winter standing stock in the water column, rather than solely resting stages from the sediment, can seed early spring bloom assemblages.
    Keywords: ddc:579.8
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-01
    Description: Copper (Cu) is an essential element for plants and microorganisms and at larger concentrations a toxic pollutant. A number of factors controlling Cu dynamics have been reported, but information on quantitative relationships is scarce. We aimed to (i) quantitatively describe and predict soil Cu concentrations (CuAR) in aqua regia considering site‐specific effects and effects of pH, soil organic carbon (SOC) and cation exchange capacity (CEC), and (ii) study the suitability of mixed‐effects modelling and rule‐based models for the analysis of long‐term soil monitoring data. Thirteen uncontaminated long‐term monitoring soil profiles in southern Germany were analysed. Since there was no measurable trend of increasing CuAR concentrations with time in the respective depth ranges of the sites, data from different sampling dates were combined and horizon‐specific regression analyses including model simplifications were carried out for 10 horizons. Fixed‐ and mixed‐effects models with the site as a random effect were useful for the different horizons and significant contributions (either of main effects or interactions) of SOC, CEC and pH were present for 9, 8 and 7 horizons, respectively. Horizon‐specific rule‐based cubist models described the CuAR data similarly well. Validations of cubist models and mixed‐effects models for the CuAR concentrations in A horizons were successful for the given population after random splitting into calibration and validation samples, but not after independent validations with random splitting according to sites. Overall, site, CEC, SOC and pH provide important information for a description of CuAR concentrations using the different regression approaches. Highlights: Information on quantitative relationships for factors controlling Cu dynamics is scarce. Site, CEC, SOC and pH provide important information for a description of Cu concentrations. Validations of cubist models and mixed‐effects models for A horizons were successful for a closed population of sites.
    Description: Bavarian State Ministry of the Environment and Consumer Protection http://dx.doi.org/10.13039/501100010219
    Description: Ministry of Agriculture and Environment Mecklenburg‐Western Pomerania
    Keywords: ddc:631.4
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-04
    Description: Soil aeration is a critical factor for oxygen‐limited subsoil processes, as transport by diffusion and advection is restricted by the long distance to the free atmosphere. Oxygen transport into the soil matrix is highly dependent on its connectivity to larger pore channels like earthworm and root colonised biopores. Here we hypothesize that the soil matrix around biopores represents different connectivity depending on biopore genesis and actual coloniser. We analysed the soil pore system of undisturbed soil core samples around biopores generated or colonised by roots and earthworms and compared them with the pore system of soil, not in the immediacy of a biopore. Oxygen partial pressure profiles and gas relative diffusion was measured in the rhizosphere and drilosphere from the biopore wall into the bulk soil with microelectrodes. The measurements were linked with structural features such as porosity and connectivity obtained from X‐ray tomography and image analysis. Aeration was enhanced in the soil matrix surrounding biopores in comparison to the bulk soil, shown by higher oxygen concentrations and higher relative diffusion coefficients. Biopores colonised by roots presented more connected lateral pores than earthworm colonised ones, which resulted in enhanced aeration of the rhizosphere compared to the drilosphere. This has influenced biotic processes (microbial turnover/mineralization or root respiration) at biopore interfaces and highlights the importance of microstructural features for soil processes and their dependency on the biopore's coloniser.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:631.4
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-07-26
    Description: Application of farmyard manure (FYM) is common practice to improve physical and chemical properties of arable soil and crop yields. However, studies on effects of FYM application mainly focussed on topsoils, whereas subsoils have rarely been addressed so far. We, therefore, investigated the effects of 36‐year FYM application with different rates of annual organic carbon (OC) addition (0, 469, 938 and 1875 g C m−2 a−1) on OC contents of a Chernozem in 0–30 cm (topsoil) and 35–45 cm (subsoil) depth. We also investigated its effects on soil structure and hydraulic properties in subsoil. X‐ray computed tomography was used to analyse the response of the subsoil macropore system (≥19 μm) and the distribution of particulate organic matter (POM) to different FYM applications, which were related to contents in total OC (TOC) and water‐extractable OC (WEOC). We show that FYM‐C application of 469 g C m−2 a−1 caused increases in TOC and WEOC contents only in the topsoil, whereas rates of ≥938 g C m−2 a−1 were necessary for TOC enrichment also in the subsoil. At this depth, the subdivision of TOC into different OC sources shows that most of the increase was due to fresh POM, likely by the stimulation of root growth and bioturbation. The increase in subsoil TOC went along with increases in macroporosity and macropore connectivity. We neither observed increases in plant‐available water capacity nor in unsaturated hydraulic conductivity. In conclusion, only very high application of FYM over long periods can increase OC content of subsoil at our study site, but this increase is largely based on fresh, easily degradable POM and likely accompanied by high C losses when considering the discrepancy between OC addition rate by FYM and TOC response in soil. Highlights A new image processing procedure to distinguish fresh and decomposed POM. The increase of subsoil C stock based to a large extend on fresh, labile POM. Potential of arable subsoils for long‐term C storage by large FYM application rates is limited. The increase in TOC has no effect on hydraulic properties of the subsoil.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:631.4
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-12-07
    Description: The fluorophore [2‐(4‐pyridyl)‐5{[4‐dimethylaminoethyl‐aminocarbamoyl‐methoxy]phenyl}oxazole], in short PDMPO, is incorporated in newly polymerized silica in diatom frustules and thereby provides a tool to estimate Si uptake, study diatom cell cycles but also determine mortality‐independent abundance‐based species specific‐growth rates in cultures and natural assemblages. In this study, the theoretical framework and applicability of the PDMPO staining technique to estimate diatom species specific‐growth rates were investigated. Three common polar diatom species, Pseudo‐nitzschia subcurvata, Chaetoceros simplex, and Thalassiosira sp., chosen in order to cover a broad range of species specific frustule and life‐cycle characteristics, were incubated over 24 h in control (no PDMPO) and with 0.125 and 0.6 μM PDMPO addition, respectively. Results indicate that specific‐growth rates of the species tested were not affected in both treatments with PDMPO addition. The specific‐growth rate estimates based on the PDMPO staining patterns (μPDMPO) were comparable and more robust than growth rates estimated from the changes in cell concentrations (μcc). This technique also allowed to investigate and highlight the importance of the illumination cycle (light and dark phases) on cell division in diatoms.
    Keywords: ddc:579.8 ; diatom frustules ; Si uptake ; growth rate estimation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-01-26
    Description: Erosion is a severe threat to the sustainable use of agricultural soils. However, the structural resistance of soil against the disruptive forces steppe soils experience under field conditions has not been investigated. Therefore, 132 topsoils under grass‐ and cropland covering a large range of physico‐chemical soil properties (sand: 2–76%, silt: 18–80%, clay: 6–30%, organic carbon: 7.3–64.2 g kg−1, inorganic carbon: 0.0–8.5 g kg−1, pH: 4.8–9.5, electrical conductivity: 32–946 μS cm−1) from northern Kazakhstan were assessed for their potential erodibility using several tests. An adjusted drop‐shatter method (low energy input of 60 Joule on a 250‐cm3 soil block) was used to estimate the stability of dry soil against weak mechanical forces, such as saltating particles striking the surface causing wind erosion. Three wetting treatments with various conditions and energies (fast wetting, slow wetting, and wet shaking) were applied to simulate different disruptive effects of water. Results indicate that aggregate stability was higher for grassland than cropland soils and declined with decreasing soil organic carbon content. The results of the drop‐shatter test suggested that 29% of the soils under cropland were at risk of wind erosion, but only 6% were at high risk (i.e. erodible fraction 〉60%). In contrast, the fast wetting treatment revealed that 54% of the samples were prone to become “very unstable” and 44% “unstable” during heavy rain or snowmelt events. Even under conditions comparable to light rain events or raindrop impact, 53–59% of the samples were “unstable.” Overall, cropland soils under semi‐arid conditions seem much more susceptible to water than wind erosion. Considering future projections of increasing precipitation in Kazakhstan, we conclude that the risk of water erosion is potentially underestimated and needs to be taken into account when developing sustainable land use strategies. Highlights Organic matter is the important binding agent enhancing aggregation in steppe topsoils. Tillage always declines aggregate stability even without soil organic carbon changes. All croplands soil are prone to wind or water erosion independent of their soil properties. Despite the semi‐arid conditions, erosion risk by water seems higher than by wind.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Keywords: ddc:631.4 ; climate change ; land use ; soil organic carbon ; soil texture ; water erosion ; wind erosion
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-01-21
    Description: Charcoal‐rich Technosols on century‐old relict charcoal hearths (RCHs) are the subject of ongoing research regarding potential legacy effects that result from historic charcoal production and subsequent charcoal amendments on forest soil properties and forest ecosystems today. RCHs consist mostly of Auh horizons that are substantially enriched in soil organic carbon (SOC), of which the largest part seems to be of pyrogenic origin (PyC). However, the reported range of SOC and PyC contents in RCH soil also suggests that they are enriched in nonpyrogenic SOC. RCH soils are discussed as potential benchmarks for the long‐term influence of biochar amendment and the post‐wildfire influences on soil properties. In this study, we utilised a large soil sample dataset (n = 1245) from 52 RCH sites in north‐western Connecticut, USA, to quantify SOC contents by total element analysis. The contents of condensed highly aromatic carbon as a proxy for black carbon (BC) were predicted by using a modified benzene polycarboxylated acid (BPCA) marker method in combination with diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy‐based partial least square regression (r2 = 0.89). A high vertical spatial sampling resolution allowed the identification of soil organic matter (SOM) enrichment and translocation processes. The results show an average 75% and 1862% increase in TOC and BPCA‐derived carbon, respectively, for technogenic Auh horizons compared to reference soils. In addition to an increase in aromatic properties, increased carboxylic properties of the RCH SOC suggest self‐humification effects of degrading charcoal and thereby the continuing formation of leachable aromatic carbon compounds, which could have effects on pedogenic processes in buried soils. Indeed, we show BPCA‐derived carbon concentrations in intermediate technogenic Cu horizons and buried top/subsoils that suggest vertical translocation of highly aromatic carbon originating in RCH Auh horizons. Topmost Auh horizons showed a gradual decrease in total organic carbon (TOC) contents with increasing depth, suggesting accumulation of recent, non‐pyrogenic SOM. Lower aliphatic absorptions in RCH soil spectra suggest different SOM turnover dynamics compared to reference soils. Furthermore, studied RCH soils featured additional TOC enrichment, which cannot be fully explained now. Highlights BC to TOC ratio and high resolution vertical SOC distribution in 52 RCH sites were studied. RCH soils non‐BC pool was potentially different to reference soils. RCH soils feature TOC accumulation in the topmost horizon. There is BC translocation into buried soils on RCH sites.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:631.4 ; benzene polycarboxylated acid marker (BPCA) ; black carbon ; charcoal degradation ; charcoal kiln ; pyrogenic carbon ; relict charcoal hearth ; biochar
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...