ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: Inter-laboratory and absolute calibrations of rock magnetic parameters are fundamental for grounding a rock magnetic database and for semi-quantitative estimates about the magnetic mineral assemblage of a natural sample. Even a dimensionless ratio, such as anhysteretic susceptibility normalized by magnetic susceptibility (Ka/K) may be biased by improper calibration of one or both of the two instruments used to measure Ka and K. In addition, the intensity of the anhysteretic remanent magnetization (ARM) of a given sample depends on the experimental process by which the remanence is imparted. We report an inter-laboratory calibration of these two key parameters, using two sets of artificial reference samples: a paramagnetic rare earth salt, Gd2O3 and a commercial "pozzolanico" cement containing oxidized magnetite with grain size of less than 0.1 m according to hysteresis properties. Using Gd2O3 the 10 Kappabridges magnetic susceptibility meters (AGICO KLY-2 or KLY-3 models) tested prove to be cross-calibrated to within 1%. On the other hand, Kappabridges provide a low-field susceptibility value that is ca. 6% lower than the tabulated value for Gd2O3, while average high-field susceptibility values measured on a range of instruments are indistinguishable from the tabulated value. Therefore, we suggest that Kappabridge values should be multiplied by 1.06 to achieve absolute calibration. Bartington Instruments magnetic susceptibility meters with MS2B sensors produce values that are 2–13% lower than Kappabridge values, with a strong dependence on sample centering within the sensor. The Ka/K ratio of ca. 11, originally obtained on discrete cement samples with a 2G Enterprises superconducting rock magnetometer and a KLY-2, is consistent with reference parameters for magnetites of grain size 〈0.1 m. On the other hand, Ka values from a 2G Enterprises magnetometer and K values from a Bartington Instruments MS2C loop sensor for u-channel and discrete cement samples, will produce average Ka/K values that are unrealistically high if not properly corrected for the nominal volume detected by the sensors for these instruments. Inter-laboratory measurements of K and Ka for standard paleomagnetic plastic cubes filled with cement indicate remarkable differences in the intensity of the newly produced ARMs (with a standard deviation of ca. 21%), that are significantly larger than the differences observed from the calibration of the different magnetometers employed in each laboratory. Differences in the alternating field decay rate are likely the major source of these variations, but cannot account for all the observed variability. With such large variations in experimental conditions, classical interpretation of a "King plot" of Ka versus K would imply significant differences in the determination of grain size of magnetite particles on the same material.
    Description: Published
    Description: 25-38
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Rock magnetism ; Magnetic susceptibility ; Anhysteretic remanent magnetization ; Calibration ; Instrumentation ; Relative ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.08. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: For an optimal analysis of the H/V curve, it appears necessary to check the instrument signal to noise ratio in the studied frequency band, to ensure that the signal from the ground noise is well above the internal noise. We assess the reliability and accuracy of various digitizers, sensors and/or digitizer-sensor couples. Although this study is of general interest for any kind of seismological study, we emphasize the influence of equipment on H/V analysis results. To display the impact of the instrumental part on the H/V behavior, some series of tests have been carried out following a step-by-step procedure: first, the digitizers have been tested in the lab (sensitivity, internal noise...), then the three components sensors, still in the lab, and finally the usual user digitizers-sensors couple in lab and outdoors. In general, the digitizer characteristics, verified during this test, correspond well to the manufacturer specifications, however, depending on the digitizer, the quality of the digitized waveform can be very good to very poor, with variation from a channel to another channel (gain, time difference etc.). It appears very clearly that digitizers need a warming up time before the recording to avoid problems in the low-frequency range. Regarding the sensors, we recommend strongly to avoid the use of “classical” accelerometers (i.e., usual force balance technology). The majority of tested seismometers (broadband and short period, even 4.5 Hz) can be used without problems from 0.4 to 25 Hz. In all cases, the instrumentation should be checked first to verify that it works well for the defined study aim, but also to define its limit of use (frequency, sensitivity...).
    Description: Published
    Description: 3-31
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: reserved
    Keywords: H/V technique ; Instrumentation ; Microtremors ; Site effects ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 24 (2007): 1117-1130, doi:10.1175/JTECH2016.1.
    Description: Sensor response corrections for two models of Sea-Bird Electronics, Inc., conductivity–temperature–depth (CTD) instruments (the SBE-41CP and SBE-41) designed for low-energy profiling applications were estimated and applied to oceanographic data. Three SBE-41CP CTDs mounted on prototype ice-tethered profilers deployed in the Arctic Ocean sampled diffusive thermohaline staircases and telemetered data to shore at their full 1-Hz resolution. Estimations of and corrections for finite thermistor time response, time shifts between when a parcel of water was sampled by the thermistor and when it was sampled by the conductivity cell, and the errors in salinity induced by the thermal inertia of the conductivity cell are developed with these data. In addition, thousands of profiles from Argo profiling floats equipped with SBE-41 CTDs were screened to select examples where thermally well-mixed surface layers overlaid strong thermoclines for which standard processing often yields spuriously fresh salinity estimates. Hundreds of profiles so identified are used to estimate and correct for the conductivity cell thermal mass error in SBE-41 CTDs.
    Description: The National Ocean Partnership Program and the National Oceanic and Atmospheric Administration (NOAA) Office of Oceanic and Atmospheric Research funded this analysis. The ITP data were acquired under National Science Foundation (NSF) Grant OCE0324233.
    Keywords: Instrumentation ; Profilers ; Salinity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 24 (2007): 1924-1935, doi:10.1175/JTECH2078.1.
    Description: A field evaluation of two new dissolved-oxygen sensing technologies, the Aanderaa Instruments AS optode model 3830 and the Sea-Bird Electronics, Inc., model SBE43, was carried out at about 32-m water depth in western Massachusetts Bay. The optode is an optical sensor that measures fluorescence quenching by oxygen molecules, while the SBE43 is a Clark polarographic membrane sensor. Optodes were continuously deployed on bottom tripod frames by exchanging sensors every 4 months over a 19-month period. A Sea-Bird SBE43 was added during one 4-month deployment. These moored observations compared well with oxygen measurements from profiles collected during monthly shipboard surveys conducted by the Massachusetts Water Resources Authority. The mean correlation coefficient between the moored measurements and shipboard survey data was 〉0.9, the mean difference was 0.06 mL L−1, and the standard deviation of the difference was 0.15 mL L−1. The correlation coefficient between the optode and the SBE43 was 〉0.9 and the mean difference was 0.07 mL L−1. Optode measurements degraded when fouling was severe enough to block oxygen molecules from entering the sensing foil over a significant portion of the sensing window. Drift observed in two optodes beginning at about 225 and 390 days of deployment is attributed to degradation of the sensing foil. Flushing is necessary to equilibrate the Sea-Bird sensor. Power consumption by the SBE43 and required pump was 19.2 mWh per sample, and the optode consumed 0.9 mWh per sample, both within expected values based on manufacturers’ specifications.
    Description: This work was funded by the MWRA and USGS.
    Keywords: Instrumentation ; Sensors ; Ocean dynamics ; Ship observations ; In situ observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics and Astronautics at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2021.
    Description: Global temperature rise and increased atmospheric carbon dioxide (CO2) levels have affected the health of the world’s ocean and water ecosystems, impacting the balances of natural carbon cycling and causing ocean acidification. Additionally, as global temperatures rise, thawing permafrost has stimulated increased release of methane (CH4), a gas with a shorter lifetime in the atmosphere but with even more heat trapping ability than CO2. In situ analysis of dissolved gas content in surface waters is currently performed with large, expensive instruments, such as spectrometers, which are coupled with gas equilibration systems, which extract dissolved gas from water and feed it to the sensor. Accurate, low cost, and portable sensors are needed to measure the dissolved CH4 and CO2 concentration in water systems to quantify their release and understand their relationship to the global carbon budget. At the same time, while greenhouse gases are well established threats to water ecosystems, the ubiquity and potential consequences of microplastics in aqueous environments are just beginning to be recognized by the environmental research community. Microplastics (MPs) are small particles of polymer debris, commonly defined as being between 1 μm and 1000 μm. Despite the pervasiveness of MPs, our ability to characterize MPs in the environment is limited by the lack of technologies for rapidly and accurately identifying and quantifying MPs. This thesis is concerned with the engineering challenges prompted by the need for high quality and quantity environmental data to better study and the impact, cycling, and prevalence of these pollutants in aqueous environments. Three distinct investigations are presented here. First, the design of the Low-Cost Gas Extraction and Measurement System (LC-GEMS) for dissolved CO2 is presented. At just under $600 dollar to build, the LC-GEMS is an ultra-portable, toolbox-sized instrument for dissolved gas sensing in near-surface waters. The LCGEMS was characterized in the lab and demonstrated linear relationships with dissolved CO2 as well as temperature. Lab calibrations and subsequent field testing in the Little Sippewissett Marsh, in Falmouth, Massachusetts showed that the LCGEMS captures both diurnal and minute-time scale trends in dissolved CO2. Second, this thesis presents the novel design of three simple and low-cost planar nanophotonic and plasmonic structures as optical transducers for measuring dissolved CH4. Through simulations, the sensitivity of the structures are evaluated and found to exhibit superior performance in the reflectance intensity readout mode to that of the standard surface-plasmon-polariton-mode Spreeta sensor. A practical, small, and low-cost implementation of this chip with a simple intensity-based measurement scheme is proposed. This design is novel in the space of dissolved gas monitoring because it shows potential to measure directly in the water phase while being robust and low-cost to implement. Finally, this thesis presents a literature review and perspective to motivate the development of field-deployable microplastic sensing techniques. A framework for field-deployable microplastic sensing is presented and seeks to inform the MP community of the potential in both traditional MP analysis techniques and unconventional methods for creating rapid and automated MP sensors. The field-deployabilty framework addresses a full scope of practical/technological trade-offs to be considered for portable MP detection.
    Keywords: Dissolved gas ; Microplastics ; Instrumentation
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fortunato, C. S., Butterfield, D. A., Larson, B., Lawrence-Slavas, N., Algar, C. K., Zeigler Allen, L., Holden, J. F., Proskurowski, G., Reddington, E., Stewart, L. C., Topçuoğlu, B. D., Vallino, J. J., & Huber, J. A. Seafloor incubation experiment with deep-sea hydrothermal vent fluid reveals effect of pressure and lag time on autotrophic microbial communities. Applied and Environmental Microbiology, 87, (2021): e00078-21, https://doi.org/10.1128/AEM.00078-21
    Description: Depressurization and sample processing delays may impact the outcome of shipboard microbial incubations of samples collected from the deep sea. To address this knowledge gap, we developed a remotely operated vehicle (ROV)-powered incubator instrument to carry out and compare results from in situ and shipboard RNA stable isotope probing (RNA-SIP) experiments to identify the key chemolithoautotrophic microbes and metabolisms in diffuse, low-temperature venting fluids from Axial Seamount. All the incubations showed microbial uptake of labeled bicarbonate primarily by thermophilic autotrophic Epsilonbacteraeota that oxidized hydrogen coupled with nitrate reduction. However, the in situ seafloor incubations showed higher abundances of transcripts annotated for aerobic processes, suggesting that oxygen was lost from the hydrothermal fluid samples prior to shipboard analysis. Furthermore, transcripts for thermal stress proteins such as heat shock chaperones and proteases were significantly more abundant in the shipboard incubations, suggesting that depressurization induced thermal stress in the metabolically active microbes in these incubations. Together, the results indicate that while the autotrophic microbial communities in the shipboard and seafloor experiments behaved similarly, there were distinct differences that provide new insight into the activities of natural microbial assemblages under nearly native conditions in the ocean.
    Description: This work was funded by Gordon and Betty Moore Foundation grant GBMF3297; the NSF Center for Dark Energy Biosphere Investigations (C-DEBI) (OCE-0939564), contribution number 562; NOAA/PMEL, contribution number 5182; and the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA cooperative agreement NA15OAR4320063, contribution number 2020-1113. The RNA-SIP methodology used in this work was developed during cruise FK010-2013 aboard the R/V Falkor supported by the Schmidt Ocean Institute. The NOAA/PMEL supported this work with ship time in 2014 and through funding to the Earth Ocean Interactions group. NSF provided ship time for the 2015 expedition through OCE-1546695 to D.A.B. and OCE-1547004 to J.F.H.
    Keywords: RNA-SIP ; Autotrophy ; Deep sea ; Hydrothermal vent ; Instrumentation ; Metagenomics ; Metatranscriptomics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-21
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Colson, B. C., & Michel, A. P. M. Flow-through quantification of microplastics using impedance spectroscopy. ACS Sensors, 6(1), (2021): 238–244, doi:10.1021/acssensors.0c02223.
    Description: Understanding the sources, impacts, and fate of microplastics in the environment is critical for assessing the potential risks of these anthropogenic particles. However, our ability to quantify and identify microplastics in aquatic ecosystems is limited by the lack of rapid techniques that do not require visual sorting or preprocessing. Here, we demonstrate the use of impedance spectroscopy for high-throughput flow-through microplastic quantification, with the goal of rapid measurement of microplastic concentration and size. Impedance spectroscopy characterizes the electrical properties of individual particles directly in the flow of water, allowing for simultaneous sizing and material identification. To demonstrate the technique, spike and recovery experiments were conducted in tap water with 212–1000 μm polyethylene beads in six size ranges and a variety of similarly sized biological materials. Microplastics were reliably detected, sized, and differentiated from biological materials via their electrical properties at an average flow rate of 103 ± 8 mL/min. The recovery rate was ≥90% for microplastics in the 300–1000 μm size range, and the false positive rate for the misidentification of the biological material as plastic was 1%. Impedance spectroscopy allowed for the identification of microplastics directly in water without visual sorting or filtration, demonstrating its use for flow-through sensing.
    Description: The authors thank the Richard Saltonstall Charitable Foundation and the National Academies Keck Futures Initiative (NAKFI DBS13) for their funding support.
    Keywords: Microplastics ; Plastics ; Impedance spectroscopy ; Dielectric properties ; Instrumentation ; Particle detection ; Flow-through ; Environmental sensing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0302-4598
    Keywords: Blood ; Dielectric properties ; Rheologic properties ; Variable magnetic fields ; Water-electrolyte balance
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Ethology and Sociobiology 5 (1984), S. 59-60 
    ISSN: 0162-3095
    Keywords: Computer ; Data Acquisition Devices ; Instrumentation ; Keyboard ; Observational Methodology
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Biochemical and Biophysical Methods 17 (1988), S. 61-66 
    ISSN: 0165-022X
    Keywords: Calibration ; Didymium filter ; Holmium filter ; Instrumentation ; Monochrmator ; Wavelength
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...