ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04.07. Tectonophysics  (4)
  • Frontiers S.A.  (2)
  • Wiley  (2)
  • American Chemical Society
  • International Union of Crystallography (IUCr)
Collection
Years
  • 1
    Publication Date: 2020-07-08
    Description: The response of continental forelands to subduction and collision is a widely investigated topic in geodynamics. The deformation occurring within a foreland shared by two opposite‐verging chains, however, is uncommon and poorly understood. The Apulia Swell in the southern end of the Adria microplate (Africa‐Europe plate boundary, central Mediterranean Sea) represents one of these cases, as it is the common foreland of the SW verging Albanides‐Hellenides and the NE verging Southern Apennines merging into the SSE verging Calabrian Arc. We investigated the internal deformation of the Apulia Swell using multiscale geophysical data: multichannel seismic profiles recording up to 12‐s two‐way time (TWT) for a consistent image of the upper crust; high‐resolution multichannel seismic profiles, high‐resolution multibeam bathymetry, and CHIRP profiles acquired by R/V OGS Explora to constrain the Quaternary geological record. The results of our analyses characterize the geometry of the South Apulia Fault System (SAFS), a 100‐km‐long and 12‐km‐wide structure attesting an extensional (and possibly transtensional) response of the foreland to the two contractional fronts. The SAFS consists of two NW‐SE right‐stepping master faults and several secondary structures. The SAFS activity spans from the Early Pleistocene through the Holocene, as testified by the bathymetric and high‐resolution seismic data, with long‐term slip rates in the range of 0.2–0.4 mm/yr. Considering the position within an area with few or none other active faults in the surroundings, the dimension, and the activity rates, the SAFS can be a candidate causative fault of the 20 February 1743, M 6.7, earthquake.
    Description: Italian Ministry for Education, University, and Research (MIUR), Premiale 2014 D. M. 291 03/05/2016.
    Description: Published
    Description: e2020TC006116
    Description: 2T. Deformazione crostale attiva
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: JCR Journal
    Keywords: active tectonics ; apulia ; south apulia fault system ; 1743 earthquake ; marine geology ; stable continental region ; ionian sea ; active faults ; subsurface geology ; seismic interpretation ; 04.04. Geology ; 04.07. Tectonophysics ; 04.02. Exploration geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-06-22
    Description: Silicic calderas are volcanic systems whose unrest evolution is more unpredictable than other volcano types because they often do not culminate in an eruption. Their complex structure strongly influences the post-collapse volcano-tectonic evolution, usually coupling volcanism and ground deformation. Among such volcanoes, the Campi Flegrei caldera (southern Italy) is one of the most studied. Significant long- and short-term ground deformations characterize this restless volcano. Several studies performed on the marinecontinental succession exposed in the central sector of the Campi Flegrei caldera provided a reconstruction of ground deformation during the last 15 kyr. However, considering that over one-third of the caldera is presently submerged beneath the Pozzuoli Gulf, a comprehensive stratigraphic on-land-offshore framework is still lacking. This study aims at reconstructing the offshore succession through analysis of high-resolution single and multichannel reflection seismic profiles and correlates the resulting seismic stratigraphic framework with the stratigraphy reconstructed on-land. Results provide new clues on the causative relations between the intra-caldera marine and volcaniclastic sedimentation and the alternating phases of marine transgressions and regressions originated by the interplay between ground deformation and sea-level rise. The volcano-tectonic reconstruction, provided in this work, connects the major caldera floor movements to the large Plinian eruptions of Pomici Principali (12 ka) and Agnano Monte Spina (4.55 ka), with the onset of the first post-caldera doming at ~10.5 ka. We emphasize that ground deformation is usually coupled with volcanic activity, which shows a self-similar pattern, regardless of its scale. Thus, characterizing the long-term deformation history becomes of particular interest and relevance for hazard assessment and definition of future unrest scenarios.
    Description: Published
    Description: 855-882
    Description: 1V. Storia eruttiva
    Description: JCR Journal
    Keywords: offshore stratigraphy ; seismic units ; La Starza succession ; volcanism, ; 04.08. Volcanology ; 04.04. Geology ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-09
    Description: This study provides a lithospheric-scale model along the Ionian Subduction zone in Southern Italy, contributing to the seismotectonic investigation of a region which is affected by relevant historical seismicity. The study employs gravity forward modelling to build the geo-structural model along a composite, NWSE trending transect extending from the Ionian to the Tyrrhenian Sea, including the Aeolian arc and the Calabro-Peloritan onshore. Through a multidisciplinary approach, we propose new interpretations of three 2D deep-seismic reflection profiles across the study area. Such interpretative profiles are used as constraints to model the observed Bouguer gravity anomalies providing upper and lower crust geometries. Whilst a tomographic model provides constraints for the lithospheric and asthenospheric modelling. The entire workflow is constrained by literature data about Moho geometry, deep seismicity and tomographic images that are integrated to determine the subducting slab geometry. The proposed model of the entire subducting system reasonably fits the observed gravity field and is coherent with the first-order geological and geophysical constraints. The modelling results in updated Tyrrhenian and Ionian Moho depth, subducting slab geometry and location, and densities of the main units, providing valuable input about the composition and geometry of the Calabrian arc structures.
    Description: PRIN-2017 (project #2017KT2MKE_003)
    Description: Published
    Description: 1259831
    Description: OST1 Alla ricerca dei Motori Geodinamici
    Description: JCR Journal
    Keywords: Calabrian Arc (Italy) ; subducion complex ; gravity forward modeling, crustal model ; Ionian Subduction zone ; Tyrrhenian back-arc basin-calabrian arc-accretionary wedge system ; Southern Italy ; 04.01. Earth Interior ; 04.07. Tectonophysics ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-08
    Description: Active normal faulting and uplifting, consistent with a WNW-ESE-oriented regional extension, dominate the Quaternary tectonics of the southern Calabrian Arc. The main tectonic structures of this extensional domain are considered to be the source of numerous historical and recent strong earthquakes, among which the 1783 seismic sequence (M 6.5–7) was one of the most destructive earthquakes ever recorded in Southern Italy. Previous works on the seismotectonic of the Calabrian Arc indicate a disagreement on the attitude (E-dipping vs W-dipping) of the main seismogenic sources slicing across southern Calabria, whereby the seismotectonic framework is still debated. Following a multidisciplinary approach, based on morpho-structural and seismological data, the geometry at depth of the most reliable sources (i.e., Cittanova and Serre faults) was first modelled in a 3D environment to retrieve information about their seismic potential. The GNSS data from the permanent stations of RING/RDN and TopNETlive Italy networks have been processed in order to estimate the velocity field affecting this area. Then, data inversion allowed us to document a predominant WNW-ESE active extensional strain orthogonally to the modelled faults, consistent with the regional dynamics. The reliability of the model was tested using empirical relationships and fault response modelling simulation. Furthermore, slip tendency analysis revealed the propensity to slip of the modelled planes by applying a remote stress state derived from the kinematic-structural survey on fault planes.
    Description: PRIN 2017, under grant number “2017KT2MKE” PIAno di inCEntivi per la RIcerca di Ateneo (PIACERI 2020/2022)
    Description: Published
    Description: 1240051
    Description: OST3 Vicino alla faglia
    Description: JCR Journal
    Keywords: Calabrian Arc ; active tectonics ; seismogenic faults ; 3D modelling ; fault response modelling ; 04. Solid Earth ; 04.07. Tectonophysics ; 05.08. Risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...