ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy  (4)
  • Wiley  (3)
  • Copernicus GmbH (Copernicus Publications)  (1)
  • American Chemical Society
Collection
Years
  • 1
    Publication Date: 2020-02-24
    Description: The North-Ligurian rifted margin is singular in that it lies immediately next to the Alpine orogenic arc. It is furthermore seismically active and can experience destructive earthquakes such as in 1887 in the region of Imperia—an event that resulted in a tsunami and more than 600 casualties in spite of a coastal area that was much less densely populated than today. Out of such rare large events, the area undergoes a limited and diffuse seismic activity that can remain undetected and is generally poorly located. This results in a poor knowledge of active structures, especially at sea. Such knowledge is however required towards a quantification of the seismic hazard along the French Riviera and the Ligurian region. To this end, the GROSMarin project was undertaken with a dual objective: (1) to characterize the North-Ligurian margin from a structural standpoint—mode and degree of crustal stretching prior to oceanic accretion, segmentation along strike, subsequent evolution in an orogenic context— and (2) to identify zones of active crustal deformation at sea that are likely to generate earthquakes. The programme is a collaborative work between GeoAzur and Dip.Te.Ris (University of Genova), with some support from INGV, IFM-GEOMAR and IFREMER. It took place from April to October 2008 and consisted in the deployment of 21 ocean-bottom seismometers (OBS) on a grid spanning 50 km along strike and 25 km across, located between Nice, France, and Imperia, Italy, and ranging from mid-slope to the deep basin. This array was extended on land by the permanent stations of the French and Italian regional networks, temporarily densified by 13 portable stations. These instruments recorded the shots of a marine seismic source towed from R/V l’Atalante and were left for more than 5 months for passive surveying. The active part of the programme aims at characterizing the main structures of the margin through crustal 3D tomography; the objective of the passive part is to decrease the detection threshold of marine microseismicity and to reach a precise location of events in order to map active faults. Some of the sea and land instruments were fitted with broadband sensors to allow for teleseismic imaging of deep lithospheric discontinuities. We present the preliminary results of this experiment—in particular a first 3D tomographic model obtained from 31.500 travel times derived from our recording of active seismic shots by the OBS’s. Passive data analysis is being under progress and first relocations have been obtained. These results give an insight into the variability of the crustal structure, both along and across strike.
    Description: Published
    Description: Vienna, Austria
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: open
    Keywords: Tomography ; Active seismology ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-24
    Description: We propose a new quantitative approach for the joint interpretation of velocity and attenuation tomography images, performed through the lateral separation of scattering and intrinsic attenuation. The horizontal P-wave scattering attenuation structure below Campi Flegrei Caldera (CFC) is imaged using the autocorrelation functions (ACF) of P-wave vertical velocity fluctuations. Cluster analysis (CA) is then applied to interpret the images derived from ACF and the available P-wave total attenuation images at 2000m quantitatively. The analysis allows the separation of intrinsic and scattering attenuation on a 2-D plane, adding new geophysical constraints to the present knowledge about this volcanic area. The final result is a new, quantitative image of the past and present tectonic and volcanological state of CFC. P-wave intrinsic dissipation dominates in an area approximately located under the volcanic centre of Solfatara, as expected in a region with a large presence of fluids and gas. A north–south scattering attenuation region is mainly located below the zone of maximum uplift in the 1982–1984 bradiseismic crisis, in the sea side of the Pozzuoli bay, but also extending below Mt Nuovo. This evidence favours the interpretation in terms of a hard but fractured body, contoured by strong S-wave scatterers, corresponding to the Caldera rim: the region is possibly a section of the residual magma body, associated with the 1538 eruption of Mt Nuovo.
    Description: Published
    Description: 1304-1310
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Probability distributions ; Seismic attenuation ; Seismic tomography ; Statistical seismology ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We investigate in detail the crustal layering of the ‘Val di Chiana Basin’ (Northern Apennines, Tuscany, Italy) through receiver functions and seismic anisotropy with hexagonal symmetry. The teleseismic data set is recorded in correspondence of a typical foreland basin resulting by the progressive eastward retreat of a regional-scale subduction zone trapped between two continents. We study the azimuthal variations of the computed and binned receiver functions associated to a harmonic angular analysis to emphasize the presence of the dipping and the anisotropic structures. The resulting S-wave velocity model shows interesting and new results for this area that we discuss in a regional geodynamic contest contributing to the knowledge of the structure of the forearc of the subduction zone. A dipping interface (N192°E strike, 18° dip) has been revealed at about 1.5 km depth, that separates the basin sediments and flysch from the carbonates and evaporites. Moreover, we interpret the two upper-crust anisotropic layers (at about 6 and 17 km depth) as the Hercynian Phyllites and Micaschists, of the Metamorphic Tuscan Basement. At relatively shallow depths, the presence of these metamorphic rocks causes the seismic anisotropy in the upper crust. The presence of shallow anisotropic layers is a new and interesting feature, first revealed in the study area. Beneath the crust–mantle transition (Moho), located about 28 km depth, our analysis reveals a 7-km-thick anisotropic layer.
    Description: Published
    Description: 545-556
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Seismic anisotopy ; Computational Seismology ; Wave propagation ; Subduction zone process ; Crustal structure ; Europe ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We present the surface wave dispersion results of the application of the ambient noise method to broad-band data recorded at 114 stations from the Istituto Nazionale di Geofisica e Vul- canologia (INGV) national broad-band network, some stations of the Mediterranean Very Broadband Seismographic Network (MedNet) and of the Austrian Central Institute for Me- teorology and Geodynamics (ZAMG). Vertical-component ambient noise data from 2005 October to 2007 March have been cross-correlated for station-pairs to estimate fundamental mode Rayleigh wave Green’s functions. Cross-correlations are calculated in 1-hr segments, stacked over periods varying between 3 months and 1.5 yr. Rayleigh wave group dispersion curves at periods from 8 to 44 s were determined using the multiple-filter analysis technique. The study region was divided into a 0.2◦ × 0.2◦ grid to invert for group velocity distribu- tions. Checkerboard tests were first carried out, and the lateral resolution was estimated to be about 0.6◦. The resulting group velocity maps from 8 to 36 s show the significant difference of the crustal structure and good correlations with known geological and tectonic features in the study region. The Po Plain and the Southern Alps evidence lower group veloci- ties due to soft alluvial deposits, and thick terrigenous sediments. Our results also clearly showed that the Tyrrhenian Sea is characterized with much higher velocities below 8 km than the Italian peninsula and the Adriatic Sea which indicates a thin oceanic crust beneath the Tyrrhenian Sea.
    Description: Published
    Description: 1242-1252
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Tomography ; Surface waves and free oscillations ; Crustal structure ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...