ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ddc:551.49  (7)
  • 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry  (4)
  • Blackwell Publishing Ltd  (7)
  • Hoboken, USA  (4)
  • American Chemical Society
Collection
Keywords
Language
Years
  • 1
    Publication Date: 2017-04-04
    Description: Despite the advance in our understanding of the carbon exchange between terrestrial ecosystems and the atmosphere, semiarid ecosystems have been poorly investigated and little is known about their role in the global carbon balance. We used eddy covariance measurements to determine the exchange of CO2 between a semiarid steppe and the atmosphere over 3 years. The vegetation is a perennial grassland of Stipa tenacissima L. located in the SE of Spain. We examined diurnal, seasonal and interannual variations in the net ecosystem carbon balance (NECB) in relation to biophysical variables. Cumulative NECB was a net source of 65.7, 143.6 and 92.1 g C mˉ2 yrˉ1 for the 3 years studied, respectively. We separated the year into two distinctive periods: dry period and growing season. The ecosystem was a net source of CO2 to the atmosphere, particularly during the dry period when large CO2 positive fluxes of up to 15 μmol mˉ2 sˉ1 were observed in concomitance with large wind speeds. Over the growing season, the ecosystem was a slight sink or neutral with maximum rates of -2.3 μmol mˉ2 sˉ1. Rainfall events caused large fluxes of CO2 to the atmosphere and determined the length of the growing season. In this season, photosynthetic photon flux density controlled day-time NECB just below 1000 μmol mˉ2 sˉ1. The analyses of the diurnal and seasonal data and preliminary geological and gas-geochemical evaluations, including C isotopic analyses, suggest that the CO2 released was not only biogenic but most likely included a component of geothermal origin, presumably related to deep fluids occurring in the area. These results highlight the importance of considering geological carbon sources, as well as the need to carefully interpret the results of eddy covariance partitioning techniques when applied in geologically active areas potentially affected by CO2-rich geofluid circulation.
    Description: Published
    Description: 539–554
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: alpha grass ; carbon sequestration ; ecosystem respiration ; eddy covariance ; geogas ; geothermal activity ; grasslands ; net ecosystem carbon balance ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Methane soil flux measurements have been made in 38 sites at the geothermal system of Sousaki (Greece) with the closed chamber method. Fluxes range from –47.6 to 29,150 mg m-2 d-1 and the diffuse CH4 output of the system has been estimated at 19 t a-1. Contemporaneous CO2 flux measurements showed a moderate positive correlation between CO2 and CH4 fluxes. Comparison of the CO2/CH4 soil flux ratios with the CO2/CH4 ratio of the gases of the main gas manifestations provided evidence for methanotrophic activity within the soil. Laboratory CH4 consumption experiments confirmed the presence of methanotrophic microorganisms in soil samples collected at Sousaki. Consumption was generally in the range from –4.9 to –38.9 pmolCH4 h-1 g-1 but could sometimes reach extremely high values (–33,000 pmolCH4 h-1 g-1.). These results are consistent with recent studies on other geothermal systems that revealed the existence of thermoacidophilic bacteria exerting methanotrophic activity in hot, acid soils, thereby reducing methane emissions to the atmosphere.
    Description: Published
    Description: 97–107
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Sousaki ; accumulation chamber ; soil degassing ; hydrothermal systems ; methane output ; methanotrophic activity ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: This thematic issue of Geofluids includes 11 papers representing the three main topics discussed in the 10th edition of the International Conference on Gas Geochemistry (ICGG-10): (i) gas in petroleum systems and seepage, (ii) gas in geothermal systems and volcanoes and (iii) gas, seismicity and geohazards. ICGG-10 was held in 2009 in Romania, a country extraordinarily rich in surface gas manifestations, that offers innumerable opportunities for innovative studies on gas geochemistry. We briefly describe the present knowledge on gases occurring both in petroliferous sedimentary basins and geothermal areas of Romania. The 11 contributions of this special issue, which include data from eight countries, are then summarised. Based on these papers and other works presented at the ICGG-10, we find that significant advances in analytical capabilities, data treating and interpretation have led to innovative insights into the origin, distribution and environmental impact of gases migrating to the Earth’s surface. It is increasingly clear, in particular, that gas geochemistry can be more effective for petroleum exploration, volcano-tectonic, geodynamic and environmental studies, if multiparametric studies are performed and the data are interpreted in the geological context.
    Description: Published
    Description: 457-462
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: geothermal gas ; international conference on gas geochemistry ; natural gas ; romania ; seeps ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-04-01
    Description: We present a workflow to estimate geostatistical aquifer parameters from pumping test data using the Python package welltestpy. The procedure of pumping test analysis is exemplified for two data sets from the Horkheimer Insel site and from the Lauswiesen site, Germany. The analysis is based on a semi‐analytical drawdown solution from the upscaling approach Radial Coarse Graining, which enables to infer log‐transmissivity variance and horizontal correlation length, beside mean transmissivity, and storativity, from pumping test data. We estimate these parameters of aquifer heterogeneity from type‐curve analysis and determine their sensitivity. This procedure, implemented in welltestpy, is a template for analyzing any pumping test. It goes beyond the possibilities of standard methods, for example, based on Theis' equation, which are limited to mean transmissivity and storativity. A sensitivity study showed the impact of observation well positions on the parameter estimation quality. The insights of this study help to optimize future test setups for geostatistical aquifer analysis and provides guidance for investigating pumping tests with regard to aquifer statistics using the open‐source software package welltestpy.
    Description: Article impact statement: We present a workflow to infer parameters of subsurface heterogeneity from pumping test data exemplified at two sites using welltestpy.
    Description: German Federal Environmental Foundation (DBU) http://dx.doi.org/10.13039/100007636
    Keywords: ddc:551.49
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-03-24
    Description: The regional terrestrial water cycle is strongly altered by human activities. Among them, reservoir regulation is a way to spatially and temporally allocate water resources in a basin for multi‐purposes. However, it is still not sufficiently understood how reservoir regulation modifies the regional terrestrial‐ and subsequently, the atmospheric water cycle. To address this question, the representation of reservoir regulation into the terrestrial component of fully coupled regional Earth system models is required. In this study, an existing process‐based reservoir network module is implemented into NOAH‐HMS, that is, the terrestrial component of an atmospheric–hydrologic modelling system, namely, the WRF‐HMS. It allows to quantitatively differentiate role of reservoir regulation and of groundwater feedback in a simulated ground‐soil‐vegetation continuum. Our study focuses on the Poyang Lake basin, where the largest freshwater lake of China and reservoirs of different sizes are located. As compared to streamflow observations, the newly extended NOAH‐HMS slightly improves the streamflow and streamflow duration curves simulation for the Poyang Lake basin for the period 1979–1986. The inclusion of reservoir regulation leads to major changes in the simulated groundwater recharges and evaporation from reservoirs at local scale, but has minor effects on the simulated soil moisture and surface runoff at basin scale. The performed groundwater feedback sensitivity analysis shows that the strength of the groundwater feedback is not altered by the consideration of reservoir regulation. Furthermore, both reservoir regulation and groundwater feedback modify the partitioning of the simulated evapotranspiration, thus affecting the atmospheric water cycle in the Poyang Lake region. This finding motivates future research with our extended fully coupled atmospheric–hydrologic modelling system by the community.
    Description: An existing process‐based reservoir network module is implemented into the terrestrial component NOAH‐HMS of the atmospheric–hydrologic modelling system WRF‐HMS. The inclusion of reservoir regulation leads to major changes in the simulated groundwater recharges and evaporation from reservoirs at local scale, but does not alter the strength of the groundwater feedback. Reservoir regulation and groundwater feedback play different roles in modifying the regional terrestrial water cycle for the Poyang Lake basin, particularly with respect to the partitioning of the simulated evapotranspiration.
    Description: German Federal Ministry of Science and Education
    Description: German Research Foundation http://dx.doi.org/10.13039/501100001659
    Description: National Key R&D Program of China
    Description: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Keywords: ddc:551.49
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Natural gas seeps in the Alpine region are poorly investigated. However, they can provide useful information regarding the hydrocarbon potential of sedimentary Alpine units and related geofluid migration, typically controlled by pressurized gas accumulations and tectonics. A gas seep located near Giswil, in the Swiss Northern Alps, was investigated, for the first time, for molecular and isotopic gas composition, methane flux to the atmosphere, and gas flux variations over time. The analyses indicated that the gas was thermogenic (CH4 〉 96%; d13C1: )35.5& to )40.2&) and showed evidence of subsurface petroleum biodegradation (13C-enriched CO2, and very low C3+ concentrations). The source rock in the region is marine Type II kerogen, which is likely the same as that providing thermogenic gas in the nearby Wilen shallow well, close to Lake Sarnen. However, the lack of d13CCO2 and d13C3 data for that well prevented us from determining whether the Wilen and Giswil seeps are fed by the same reservoir and seepage system. Gas fluxes from the Giswil seep, measured using a closedchamber system, were significant and mainly from two major vents. However, a substantial gas exhalation from the soil occurs diffusely in an area of at least 115 m2, leading to a total CH4 output conservatively estimated to be at least 16 tonnes per year. Gas flux variations, monitored over a 1-month period by a special tent and flowmeter, showed not only daily meteorological oscillations, but also an intrinsic ‘pulsation’ with periods of enhanced flux that lasted 2–6 h each, occurring every few days. The pulses are likely related to episodes of gas pressure build-up and discharge along the seepage system. However, to date, no relationship to seismicity in the active Sarnen strike-slip fault system has been established.
    Description: Published
    Description: 476-485
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: Alps ; isotopes ; methane ; organic geochemistry ; seeps ; Switzerland ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-09-27
    Description: Little research attention has been given to validating clusters obtained from the groundwater geochemistry of the waterworks' capture zone with a prevailing lake‐groundwater exchange. To address this knowledge gap, we proposed a new scheme whereby Gaussian finite mixture modeling (GFMM) and Spike‐and‐Slab Bayesian (SSB) algorithms were utilized to cluster the groundwater geochemistry while quantifying the probability of the resulting cluster membership against each other. We applied GFMM and SSB to 13 geochemical parameters collected during different sampling periods at 13 observation points across the Barnim Highlands plateau located in the northeast of Berlin, Germany; this included 10 observation wells, two lakes, and a gallery of drinking production wells. The cluster analysis of GFMM yielded nine clusters, either with a probability ≥0.8, while the SSB produced three hierarchical clusters with a probability of cluster membership varying from 〈0.2 to 〉0.8. The findings demonstrated that the clustering results of GFMM were in good agreement with the classification as per the principal component analysis and Piper diagram. By superimposing the parameter clustering onto the observation clustering, we could identify discrepancies that exist among the parameters of a certain cluster. This enables the identification of different factors that may control the geochemistry of a certain cluster, although parameters of that cluster share a strong similarity. The GFMM results have shown that from 2002, there has been active groundwater inflow from the lakes towards the capture zone. This means that it is necessary to adopt appropriate measures to reverse the inflow towards the lakes.
    Description: Article impact statement: The probability of cluster membership quantified using an algorithm should be validated against another probabilistic‐based classifier.
    Description: Federal Ministry of Education and Research http://dx.doi.org/10.13039/501100002347
    Keywords: ddc:551.9 ; ddc:551.49
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-06
    Description: In recent years, the issue of high groundwater levels has caught attention. Unfavorable consequences of high groundwater levels are especially damage to buildings, infrastructure, and the environment. Processes that lead to high groundwater levels are hydrological (heavy or extended rainfall and flood events), or anthropogenic (reduced groundwater extractions, interaction with sewer networks, hydraulic engineering measures, structural interventions in the water balance, and mining activities). Several different map products have been prepared for the information of inhabitants and for planning purposes, and also methods for damage and risk analysis related to high groundwater levels have been developed. Groundwater management measures and structural measures are available to reduce the risk related to high groundwater levels. An operational management system could be combined from existing components, but operational forecasting systems for high groundwater levels are—different to flood forecasting systems—not yet common practice. A better understanding of the processes and the development of integrated approaches for modeling, design, planning, forecasting, and warning, as well as improvement of interdisciplinary collaboration between different organizations, are recommendations for the future. This article is categorized under: Engineering Water 〉 Engineering Water Water and Life 〉 Conservation, Management, and Awareness Science of Water 〉 Hydrological Processes Science of Water 〉 Water Extremes
    Description: Pumping water from a basement during the Neiße flood 2010 in Saxony. The clear water indicates that the basement flooding originates from groundwater (photo: Reinhard Schinke).
    Keywords: ddc:551.49
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-06-17
    Description: Urban green space is increasingly viewed as essential infrastructure to build resilience to climate change by retaining water in the city landscape and balancing ecohydrological partitioning into evapotranspiration for cooling and groundwater recharge. Quantifying how different vegetation types affect water partitioning is essential for future management, but paucity of data and the complex heterogeneity of urban areas make water balance estimates challenging. Here, we provide a preliminary assessment of water partitioning from different sized patches of trees and grass as well as from sealed surfaces. To do this, we used limited field observations together with an advanced, process‐based tracer‐aided ecohydrological model at a meso‐scale (5 km2) in central Berlin, Germany. Transpiration was the dominant green water flux accounting for over 50% of evapotranspiration in the modelled area. Green water fluxes were in general greater from trees compared with grass, but grass in large parks transpired more water compared with grass in small parks that were intensively used for recreation. Interception evaporation was larger for trees compared with grass, but soil water evaporation was greater for grass compared with trees. We also show that evapotranspiration from tree‐covered areas comprise almost 80% of the total evapotranspiration from the whole model domain while making up less than 30% of the surface cover. The results form an important stepping‐stone towards further upscaling over larger areas and highlights the importance of continuous high‐resolution hydrological measurements in the urban landscape, as well as the need for improvements to ecohydrological models to capture important urban processes.
    Description: Berlin University Alliance / Einstein Stiftung Berlin, Climate and Water under Change
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Einstein Stiftung Berlin http://dx.doi.org/10.13039/501100006188
    Description: Leverhulme Trust http://dx.doi.org/10.13039/501100000275
    Description: Urban Climate Observatory (UCO) Berlin
    Keywords: ddc:551.49
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-07-21
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The countless kettle holes in the Late Pleistocene landscapes of Northern Europe are hotspots for biodiversity and biogeochemical processes. As a rule, they are hydraulically connected to the shallow groundwater system. The rapid, intensive turnover of carbon, nutrients and pollutants in the kettle holes therefore has a major impact on the quality of the shallow groundwater downstream. As a result of high‐evapotranspiration rates from their riparian vegetation or strong storm events, the process of downstream groundwater flow may stagnate and reverse back towards the kettle hole, making interactions between the groundwater and kettle hole more complex. Furthermore, the highly heterogeneous soil landscape in the catchment contributes to this complexity. Therefore, the present study aims to enhance our understanding of this complicated interaction. To this end, 24 model variants were integrated into HydroGeoSphere, capturing a wide range of uncertainties in quantifying the extent and timing of groundwater flow reversal between a kettle hole and the adjacent aquifer. The findings revealed that the groundwater flow reversal lasted between 1 month and 19 years at most and occurred in a distance of more than 140 m downstream of the kettle hole. Our results demonstrated that the groundwater flow reversal arises especially often in areas where the shallow aquifer possesses low‐hydraulic conductivity. There may also be a recurrent circulating flow between the groundwater and kettle hole, resulting in solute turnover within the kettle hole. This holds particularly true in dry periods with medium to low‐water levels within the kettle hole and a negative water balance. However, shallow groundwater flow reversals are not necessarily a consequence of seasonal effects. In this respect, the properties of the local shallow aquifer by far outweigh the effect of the kettle hole location in the regional flow regime.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Frequency of the direction of water flow from a kettle hole towards the aquifer and its reversal for different aquifer sediments on a vertically cross section through the water body and the surrounding aquifer.〈boxed-text position="anchor" content-type="graphic" id="hyp14890-blkfxd-0001" xml:lang="en"〉 〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:08856087:media:hyp14890:hyp14890-toc-0001"〉
    Description: https://open-research-data.zalf.de/default.aspx
    Keywords: ddc:551.49 ; groundwater flow reversal ; HydroGeoSphere ; kettle hole ; numerical experiment ; surface–groundwater interaction
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2024-02-28
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Hydrogeological information about an aquifer is difficult and costly to obtain, yet essential for the efficient management of groundwater resources. Transferring information from sampled sites to a specific site of interest can provide information when site‐specific data is lacking. Central to this approach is the notion of site similarity, which is necessary for determining relevant sites to include in the data transfer process. In this paper, we present a data‐driven method for defining site similarity. We apply this method to selecting groups of similar sites from which to derive prior distributions for the Bayesian estimation of hydraulic conductivity measurements at sites of interest. We conclude that there is now a unique opportunity to combine hydrogeological expertise with data‐driven methods to improve the predictive ability of stochastic hydrogeological models.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉〈italic〉Article impact statement〈/italic〉: This article introduces hierarchical clustering as a method for defining a notion of site similarity; the aim of this method is to improve the derivation of prior distributions in Bayesian methods in hydrogeology.〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://github.com/GeoStat-Bayesian/geostatDB
    Description: https://github.com/GeoStat-Bayesian/exPrior
    Description: https://github.com/GeoStat-Bayesian/siteSimilarity
    Keywords: ddc:551.49 ; hydrogeological sites ; hydrogeological modeling
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...