ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Chemical Society  (2,084,048)
  • American Geophysical Union  (232,449)
  • American Chemical Society (ACS)
Collection
Publisher
Years
  • 101
    Publication Date: 2022-08-26
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 127(3), (2022): e2021JC017839, https://doi.org/10.1029/2021JC017839.
    Description: Using long-term moorings data together with wind and sea ice measurements, we document the characteristics and variations of upwelling in Barrow Canyon and investigate the upwelled Atlantic Water (AW) on the Chukchi Sea shelf and how it impacts the ice cover. Driven by strong northeasterly winds, upwelling occurs more often in the cold months, and the occurrence tends to increase interannually since 2001. Over the 12-year mooring record at the mouth of Barrow Canyon, roughly 10% of the upwelling events can drive AW onto the Chukchi Sea shelf. Both AW and non-AW upwelling events have more occurrence and stronger strength in the cold months, but do not present a significant interannual trend. These variations are associated with the northeasterly winds. Comparing to the non-AW upwelling, the AW upwelling is generally characterized by more vertical displacement of the AW layer at the mouth of Barrow Canyon, and stronger up-canyon volume and heat transport. In the ice-covered period, these two types of upwelling have different consequences for forming polynyas on the shelf. Under similar wind forcing, the ice reduction appears confined in the coastal region in the non-AW upwelling events, while during AW upwelling events, the sea ice declines dramatically in the shelf interior with 15% more ice loss. It elucidates that the heat carried by the upwelled AW plays a considerable role in modulating the ice cover in the shelf interior.
    Description: This work was supported by the National Key Research and Development Program of China under Grant 2018YFC1406104; and the National Nature Science Foundation of China under grants NSFC 41425003 and NSFC 41971084 (S. Li, T. Dou, C. Xiao, and D. Qin); and the National Science Foundation under grants PLR-1504333 and OPP-1733564; the National Oceanic and Atmospheric Administration under grant NA14OAR4320158 (P. Lin); Arctic Challenge for Sustainability II (ArCSII, M. Itoh, T. Kikuchi).
    Description: 2022-08-26
    Keywords: upwelling ; Atlantic Water ; Sea Ice ; Barrow Canyon ; Chukchi Sea
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2022-08-19
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology 37, (2022): e2021PA004379, https://doi.org/10.1029/2021pa004379.
    Description: Atlantic Meridional Overturning Circulation (AMOC) plays a central role in the global redistribution of heat and precipitation during both abrupt and longer-term climate shifts. Over the next century, AMOC is projected to weaken due to greenhouse gas warming, though projecting its future behavior is dependent on a better understanding of how AMOC changes are forced. Seeking to resolve an apparent contradiction of AMOC trends from paleorecords of the more recent past, we reconstruct seawater cadmium, a nutrient-like tracer, in the Florida Straits over the last ∼8,000 years, with emphasis on the last millennium. The gradual reduction in seawater Cd over the last 8,000 years could be due to a reduction in AMOC, consistent with cooling Northern Hemisphere temperatures and a southward shift of the Intertropical Convergence Zone. However, it is difficult to reconcile this finding with evidence for an increase in geostrophic flow through the Florida Straits over the same time period. We combine data from intermediate water depth sediment cores to extend this record into the Common Era at sufficient resolution to address the broad scale changes of this time period. There is a small decline in the Cd concentration in the Late Little Ice Age relative to the Medieval Climate Anomaly, but this change was much smaller than the changes observed over the Holocene and on the deglaciation. This suggests that any trend in the strength of AMOC over the last millennium must have been very subtle.
    Description: This work was funded by the NSF Graduate Research Fellowship DGE-1148903 (SV) and NSF grant OCE-1459563 and OCE-1851900 (JLS).
    Keywords: AMOC ; seawater cadmium ; Florida Straits ; Holocene ; Little Ice Age
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2022-06-28
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 127(1), (2022): e2021JC017715, https://doi.org/10.1029/2021JC017715.
    Description: The Mid-Atlantic Bight (MAB) hosts a large and productive marine ecosystem supported by high phytoplankton concentrations. Enhanced surface chlorophyll concentrations at the MAB shelf-break front have been detected in synoptic measurements, yet this feature is not present in seasonal means. To understand why, we assess the conditions associated with enhanced surface chlorophyll at the shelf break. We employ in-situ and remote sensing data, and a 2-dimensional model to show that Ekman restratification driven by upfront winds drives ephemerally enhanced chlorophyll concentrations at the shelf-break front in spring. Using 8-day composite satellite-measured surface chlorophyll concentration data from 2003–2020, we constructed a daily running mean (DRM) climatology of the cross-shelf chlorophyll distribution for the northern MAB region. While the frontal enhancement of chlorophyll is apparent in the DRM climatology, it is not captured in the seasonal climatology due to its short duration of less than a week. In-situ measurements of the frontal chlorophyll enhancement reveal that chlorophyll is highest in spring when the shelf-break front slumps offshore from its steep wintertime position causing restratification in the upper part of the water column. Several restratification mechanisms are possible, but the first day of enhanced chlorophyll at the shelf break corresponds to increasing upfront winds, suggesting that the frontal restratification is driven by offshore Ekman transport of the shelf water over the denser slope water. The 2-dimensional model shows that upfront winds can indeed drive Ekman restratification and alleviate light limitation of phytoplankton growth at the shelf-break front.
    Description: This research was supported by the National Science Foundation (OCE-1657803, OCE-1657855, and OCE-1655686) and the Dalio Explorer Fund. Support for H. Oliver was provided by the WHOI Postdoctoral Scholar program.
    Description: 2022-06-28
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2022-05-29
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(12), (2021): e2021JC017621, https://doi.org/10.1029/2021JC017621.
    Description: Wind-driven coastal upwelling is an important process that transports nutrients from the deep ocean to the surface, fueling biological productivity. To better understand what affects the upward transport of nutrients (and many other properties such as temperature, salinity, oxygen, and carbon), it is necessary to know the depth of source waters (i.e., “source depth”) or the density of source waters (“source density”). Here, we focus on the upwelling driven by offshore Ekman transport and present a scaling relation for the source depth and density by considering a balance between the wind-driven upwelling and eddy-driven restratification processes. The scaling suggests that the source depth varies as (τ/N)1/2, while the source density goes as (τ1/2N3/2), where τ is the wind stress and N is the stratification. We test these relations using numerical simulations of an idealized coastal upwelling front with varying constant wind forcing and initial stratification, and we find good agreement between the theory and numerical experiments. This work highlights the importance of considering stratification in wind-driven upwelling dynamics, especially when thinking about how nutrient transport and primary production of coastal upwelling regions might change with increased ocean warming and stratification.
    Description: This work was funded by the ONR grant N00014-17-1-2390, and J. He was supported by the NASA FINESST award 80NSSC19K1350.
    Description: 2022-05-29
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2022-06-06
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Piecuch, C. G., Coats, S., Dangendorf, S., Landerer, F. W., Reager, J. T., Thompson, P. R., & Wahl, T. High-tide floods and storm surges during atmospheric rivers on the US West Coast. Geophysical Research Letters, 49(2), (2022): e2021GL096820, https://doi.org/10.1029/2021GL096820.
    Description: Atmospheric rivers (ARs) cause inland hydrological impacts related to precipitation. However, little is known about coastal hazards associated with these events. We elucidate high-tide floods (HTFs) and storm surges during ARs on the US West Coast during 1980–2016. HTFs and ARs cooccur more often than expected from chance. Between 10% and 63% of HTFs coincide with ARs on average, depending on location. However, interannual-to-decadal variations in HTFs are due more to tides and mean sea-level changes than storminess variability. Only 2–15% of ARs coincide with HTFs, suggesting that ARs typically must cooccur with high tides or mean sea levels to cause HTFs. Storm surges during ARs reflect local wind, pressure, and precipitation forcing: meridional wind and barometric pressure are primary drivers, but precipitation makes secondary contributions. This study highlights the relevance of ARs to coastal impacts, clarifies the drivers of storm surge during ARs, and identifies future research directions.
    Description: This work was supported by National Aeronautics and Space Administration Sea Level Change Team awards 80NSSC20K1241 and 80NM0018D0004 (to C. G. P.). The contribution from F. W. L. and J. T. R. represents research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004).
    Keywords: atmospheric rivers ; high-tide flooding ; storm surge ; coastal impacts ; coastal hazards ; sea level
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2022-06-06
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 49(2), (2022): e2021GL096216, https://doi.org/10.1029/2021GL096216.
    Description: Ocean-to-ice heat flux (OHF) is important in regulating the variability of sea ice mass balance. Using surface drifting buoy observations, we show that during winter in the Arctic Ocean's Beaufort Gyre region, OHF increased from 0.76 ± 0.05 W/m2 over 2006–2012 to 1.63 ± 0.08 W/m2 over 2013–2018. We find that this is a result of thinner and less-compact sea ice that promotes enhanced winter ice growth, stronger ocean vertical convection, and subsurface heat entrainment. In contrast, Ekman upwelling declined over the study period, suggesting it had a secondary contribution to OHF changes. The enhanced ice growth creates a cooler, saltier, and deeper ocean surface mixed layer. In addition, the enhanced vertical temperature gradient near the mixed layer base in later years favors stronger entrainment of subsurface heat. OHF and its increase during 2006–2018 were not geographically uniform, with hot spots found in an upwelling region where ice was most seasonally variable.
    Description: This study was supported by the National Key Research and Development Program of China (2018YFA0605901), the National Natural Science Foundation of China (41941012; 42076225; 41776192; 41976219; 41706211). S. C. was supported by the Woods Hole Oceanographic Institution Early Career Scientist Fund and the Lenfest Fund for Early Career Scientists. J. Z. was supported by U.S. NSF Grants PLR-1603259, PLR-1602985, and NNA-1927785. M. S. was supported by U.S. ONR Grant N00014-17-1-2545, NSF Grants PLR 1603266 and OPP-1751363 and NOAA Grants NA15OAR4320063AM170 and NA20OAR4320271.
    Keywords: ocean-to-ice heat flux ; entrainment heat flux ; Ekman pumping ; Beaufort Gyre ; sea ice retreat ; ice leads
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2022-06-17
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chan, D., Rigden, A., Proctor, J., Chan, P. W., & Huybers, P. Differences in radiative forcing, not sensitivity, explain differences in summertime land temperature variance change between CMIP5 and CMIP6. Earth’s Future, 10(2), (2022): e2021EF002402, https://doi.org/10.1029/2021EF002402.
    Description: How summertime temperature variability will change with warming has important implications for climate adaptation and mitigation. CMIP5 simulations indicate a compound risk of extreme hot temperatures in western Europe from both warming and increasing temperature variance. CMIP6 simulations, however, indicate only a moderate increase in temperature variance that does not covary with warming. To explore this intergenerational discrepancy in CMIP results, we decompose changes in monthly temperature variance into those arising from changes in sensitivity to forcing and changes in forcing variance. Across models, sensitivity increases with local warming in both CMIP5 and CMIP6 at an average rate of 5.7 ([3.7, 7.9]; 95% c.i.) × 10−3°C per W m−2 per °C warming. We use a simple model of moist surface energetics to explain increased sensitivity as a consequence of greater atmospheric demand (∼70%) and drier soil (∼40%) that is partially offset by the Planck feedback (∼−10%). Conversely, forcing variance is stable in CMIP5 but decreases with warming in CMIP6 at an average rate of −21 ([−28, −15]; 95% c.i.) W2 m−4 per °C warming. We examine scaling relationships with mean cloud fraction and find that mean forcing variance decreases with decreasing cloud fraction at twice the rate in CMIP6 than CMIP5. The stability of CMIP6 temperature variance is, thus, a consequence of offsetting changes in sensitivity and forcing variance. Further work to determine which models and generations of CMIP simulations better represent changes in cloud radiative forcing is important for assessing risks associated with increased temperature variance.
    Description: This study was supported by the Harvard Global Institute and NSF (Award 1903657). D. Chan was also supported by the Woods Hole Oceanographic Institute Weston Howland Jr. Postdoctoral Fellowship.
    Keywords: continental temperature variability ; extreme events ; soil moisture ; radiative forcing ; evapotranspiration ; CMIP
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2022-06-16
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Semper, S., Våge, K., Pickart, R., Jónsson, S., & Valdimarsson, H. Evolution and transformation of the North Icelandic Irminger Current along the North Iceland Shelf. Journal of Geophysical Research: Oceans, 127(3), (2022): e2021JC017700, https://doi.org/10.1029/2021jc017700.
    Description: The North Icelandic Irminger Current (NIIC) flowing northward through Denmark Strait is the main source of salt and heat to the north Iceland shelf. We quantify its along-stream evolution using the first high-resolution hydrographic/velocity survey north of Iceland that spans the entire shelf along with historical hydrographic measurements as well as data from satellites and surface drifters. The NIIC generally follows the shelf break. Portions of the flow recirculate near Denmark Strait and the Kolbeinsey Ridge. The current's volume transport diminishes northeast of Iceland before it merges with the Atlantic Water inflow east of Iceland. The hydrographic properties of the current are modified along its entire pathway, predominantly because of lateral mixing with cold, fresh offshore waters rather than air-sea interaction. Progressing eastward, the NIIC cools and freshens by approximately 0.3°C and 0.02–0.03 g kg−1 per 100 km, respectively, in both summer and winter. Dense-water formation on the shelf is limited, occurring only sporadically in the historical record. The hydrographic properties of this locally formed water match the lighter portion of the North Icelandic Jet (NIJ), which emerges northeast of Iceland and transports dense water toward Denmark Strait. In the region northeast of Iceland, the NIIC is prone to baroclinic instability. Enhanced eddy kinetic energy over the steep slope there suggests a dynamical link between eddies shed by the NIIC and the formation of the NIJ as previously hypothesized. Thus, while the NIIC rarely supplies the NIJ directly, it may be dynamically important for the overturning circulation in the Nordic Seas.
    Description: This research was supported by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101022251 (S. Semper), the Trond Mohn Foundation Grant BFS2016REK01 (S. Semper and K. Våge), and the U.S. National Science Foundation Grants OCE-1558742 and OCE-1259618 (R. S. Pickart).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2022-06-13
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 48(24), (2021): e2021GL095615, https://doi.org/10.1029/2021GL095615.
    Description: The North Atlantic deep water (NADW), according to the classic ocean circulation theory, moves southward as a deep western boundary current (DWBC) even though it may veer into interior and then rejoin DWBC when encountering regional circulation features, such as eddy-driven recirculation. In potential vorticity dynamics, the eastern side of the Mid-Atlantic Ridge (MAR) may provide a similar topographic support as the continental slope off the western boundary for a southward transport of NADW. In this article, we quantify the mean meridional NADW transports on both sides of the MAR using a data-assimilated product and find that the flow in the eastern basin contributes about 38 ± 14% of the net southward transport of NADW from 50° to 35°N. Our study points to the importance of observing NADW transport variations on the eastern side of the MAR in order to monitor the transport strength of Atlantic Meridional Overturning Circulation.
    Description: iayan Yang is supported by the WHOI-OUC Collaborative Initiative, the W. V. A. Clark Chair for Excellence in Oceanography from WHOI, and National Science Foundation. Sijia Zou acknowledges the support from the Physical Oceanography Program of the United States National Science Foundation Grants OCE-1756361. Yujia Zhai is supported by China Scholarship Council as a 2-yr guest student to visit WHOI. Yujia Zhai and Xiuquan Wan are supported by major project (41776009) of National Natural Science Foundation of China. Data from the RAPID MOC monitoring project are funded by the Natural Environment Research Council and are freely available from www.rapid.ac.uk/rapidmoc. Collection of MOVE data was funded by NOAA Research, and carried out by principal investigators Uwe Send and Matthias Lankhorst. MOVE data are made freely available through the international OceanSITES program.
    Description: 2022-06-13
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2022-06-13
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Forsyth, J., Gawarkiewicz, G., & Andres, M. The impact of Warm Core Rings on Middle Atlantic Bight shelf temperature and shelf break velocity. Journal of Geophysical Research: Oceans, 127, (2022): e2021JC017759, https://doi.org/10.1029/2021jc017759.
    Description: Warm Core Rings (WCRs) are known to disrupt the shelf flow as well as drive strong heat transport onto the Middle Atlantic Bight shelf. We examine 27 rings sampled by the container ship Oleander, 16 rings which have in-situ velocity data and 11 rings identified from satellite sea surface height but with in-situ temperature data, to study the variability in rings' impact on shelf break velocities and on the temperature of the adjacent shelf. WCRs that have higher rotational velocities and are closer to the shelf are found to exert greater influence on the along-shelf velocities, with the fastest and closest rings reversing the direction of flow at the shelf break. As rings approach the study site, the Shelfbreak Jet is faster than when the rings are about to exit the study site, likely due to first steepening then flattening of the isopycnals at the Shelfbreak Front. Rings also have lasting impacts on the shelf temperature: rings with faster rotational velocities cool the shelf and rings with slower rotational velocities warm the shelf. The evolution of temperature on the shelf as a ring passes is strongly tied to the season. During warmer seasons, when temperature stratification on the shelf is strong, a ring cools the shelf; during periods of weak thermal stratification, rings tend to warm the shelf. Rings which cool the shelf are additionally associated with increased upwelling as they pass the study site.
    Description: J. Forsyth and M. Andres were supported by OCE-1924041. J. Forsyth and G. Gawarkiewicz were supported by ONR N00014-19-1-2646. G. Gawarkiewicz was also supported by NSF under grant OCE-1851261.
    Keywords: Warm Core Rings ; Middle Atlantic Bight ; CMV Oleander ; Shelfbreak processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2022-07-19
    Description: Author Posting. © American Geophysical Union, 20222. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 127(3), (2022): e2021JB023244, https://doi.org/10.1029/2021jb023244.
    Description: Spatial variations in mantle melting induced by the Iceland hotspot have strong effects on meso-scale mantle upwelling and crustal production along the slow-spreading Reykjanes Ridge. The ridge-hotspot interaction has been recorded by diachronous V-shaped ridges and troughs extending away from Iceland, as well as by changes in ridge segmentation since 37 Ma. The origins of V-shaped structures are widely debated, while the causes of the gradual erasion of ridge segments bounded by transform faults are rarely investigated. Through 3D time-dependent geodynamic modeling, this study investigates how the hotspot-induced regional mantle melting variations affect ridge segmentation. Periodic temperature perturbations were initially imposed beneath the melting zone to trigger buoyant upwelling cells, which corresponded to the offset ridge segments at the Reykjanes Ridge. Iceland hotspot-induced long-wavelength mantle melting variations were generated by applying a regional linear temperature gradient at the bottom of the model domain. Modeling reveals a two-stage evolution of the buoyant upwelling cells that characterizes the segmentation transition at the Reykjanes Ridge. In Stage 1, the regional mantle melting variations trigger along-axis pressure-driven mantle flow, which alters the segment-scale mantle upwelling and promotes the propagation of segment boundaries away from the region with relatively higher mantle temperature. In Stage 2, buoyant upwelling cells are destroyed progressively as along-axis mantle flow dominants, leaving V-shaped diachronous boundaries between the segmented and unsegmented crust. These results advance our understanding of the effects of long-wavelength mantle melting variations induced by regional mantle heterogeneities on ridge segment evolution at slow-spreading ridges.
    Description: This work was supported by Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0205); the National Science Foundation of China (41890813, 41976066, 91858207, 41976064, and 91628301); the Chinese Academy of Sciences (Y4SL021001, QYZDY-SSW-DQC005, 133244KYSB20180029, 131551KYSB20200021 and ISEE2021PY03); the Guangdong Basic and Applied Basic Research Foundation (2021A1515012227); the National Key Research and Development Program of China (2018YFC0309800 and 2018YFC0310105), and the Hainan Provincial Natural Science Foundation of China (421QN381). We thank the Computational Infrastructure for Geodynamics (geodynamics.org) which is funded by the National Science Foundation (EAR-0949446 and EAR-1550901) for supporting the development of ASPECT (https://geodynamics.org/cig/software/aspect/). The numerical simulation is supported by the High-Performance Computing Division in the South China Sea Institute of Oceanology. Figures were drawn using the GMT software of Wessel and Smith (1998).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2022-07-18
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 49(2), (2022): e2021GL096863, https://doi.org/10.1029/2021GL096863.
    Description: The Patagonian slab window has been proposed to enhance the solid Earth response to ice mass load changes in the overlying Northern and Southern Patagonian Icefields (NPI and SPI, respectively). Here, we present the first regional seismic velocity model covering the entire north-south extent of the slab window. A slow velocity anomaly in the uppermost mantle indicates warm mantle temperature, low viscosity, and possibly partial melt. Low velocities just below the Moho suggest that the lithospheric mantle has been thermally eroded over the youngest part of the slab window. The slowest part of the anomaly is north of 49°S, implying that the NPI and the northern SPI overlie lower viscosity mantle than the southern SPI. This comprehensive seismic mapping of the slab window provides key evidence supporting the previously hypothesized connection between post-Little Ice Age anthropogenic ice mass loss and rapid geodetically observed glacial isostatic uplift (≥4 cm/yr).
    Description: The facilities of the IRIS Consortium are supported by the National Science Foundation’s SAGE Award under Cooperative Support Agreement EAR-1851048. The GUANACO project is funded by the National Science Foundation under grants EAR-1714154 to WUSTL and EAR-1714662 to SMU, and Erik R. Ivins was supported by NASA under grant NNH19ZDA001N-GRACEFO.
    Description: 2022-07-18
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    facet.materialart.
    Unknown
    American Geophysical Union
    Publication Date: 2022-11-03
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 127(7),(2022): e2022JB024357, https://doi.org/10.1029/2022jb024357.
    Description: Crustal magmatic systems likely consist of magmatic reservoirs dominated by crystal mush. Recent studies suggest that the physical processes occurring in crystal mush could alter the response of magmatic reservoirs during volcanic unrest. Here, we present a magma chamber deformation model that incorporates two new aspects in crystal mush: heat and exsolved gas. The model is based on earlier studies by Liao et al. (2021, https://doi.org/10.1029/2020JB019395) with additional processes including thermal-mechanical coupling, dependence of material properties on gas content, and temperature evolution following an injection of hotter magma. The post-injection time-dependent evolution of the system can be grouped into three periods, which are dominated by poroelastic diffusion (short term), viscoelastic relaxation (mid term), and thermal equilibration (long term). All three time-regimes are strongly affected by gas distribution, which alters the relative compressibility of the crystal-rich and crystal-poor regions in the chamber. The contribution of thermal evolution emerges during the mid-term evolution. The time-dependent evolution of the system highlights the intrinsic ability of a gas-bearing mushy magma chamber to generate non-monotonic time series of stresses, deformation, and magma transport.
    Keywords: Crystal mush ; Magma chamber ; Exsolved volatiles
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2022-11-04
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Parnell-Turner, R., Smith, D. K., & Dziak, R. P. Hydroacoustic monitoring of seafloor spreading and transform faulting in the equatorial Atlantic Ocean. Journal of Geophysical Research: Solid Earth, 127(7), (2022): e2022JB024008, https://doi.org/10.1029/2022JB024008.
    Description: Seismicity along mid-ocean ridges and oceanic transform faults provides insights into the processes of crustal accretion and strike-slip deformation. In the equatorial Atlantic ocean, the slow-spreading Mid-Atlantic Ridge is offset by some of the longest-offset transform faults on Earth, which remain relatively poorly understood due to its remote location far from land-based teleseismic receivers. A catalog of T-phase events detected by an array of 10 autonomous hydrophones deployed between 2011 and 2015, extending from 20°N to 10°S is presented. The final catalog of 6,843 events has a magnitude of completeness of 3.3, compared to 4.4 for the International Seismic Center teleseismic catalog covering the same region, and allows investigation of the dual processes of crustal accretion and transform fault slip. The seismicity rate observed at asymmetric spreading segments (those hosting detachment faults) is significantly higher than that of symmetric spreading centers, and 74% of known hydrothermal vents along the equatorial Mid-Atlantic Ridge occur on asymmetric spreading segments. Aseismic patches are present on nearly all equatorial Atlantic transform faults, including on the Romanche transform where regional rotation and transpression could explain both bathymetric uplift and reduction in seismic activity. The observed patterns in seismicity provide insight into the thermal and mechanical structure of the ridge axis and associated transform faults, and potentially provide a method for investigating the distribution of hydrothermal vent systems.
    Description: This research was supported by National Science Foundation Grants EAR-1062238, EAR-1062165, and OCE-1839727. This paper is NOAA Pacific Marine Environmental Laboratory contribution 5323.
    Keywords: Mid-ocean ridge ; Oceanic transform fault ; T-phase ; Earthquake ; Hydrothermal vent
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2022-11-04
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wenegrat, J. O., Bonanno, E., Rack, U., & Gebbie, G. A century of observed temperature change in the Indian Ocean. Geophysical Research Letters, 49(13), (2022): e2022GL098217, https://doi.org/10.1029/2022GL098217.
    Description: The Indian Ocean is warming rapidly, with widespread effects on regional weather and global climate. Sea-surface temperature records indicate this warming trend extends back to the beginning of the 20th century, however the lack of a similarly long instrumental record of interior ocean temperatures leaves uncertainty around the subsurface trends. Here we utilize unique temperature observations from three historical German oceanographic expeditions of the late 19th and early 20th centuries: SMS Gazelle (1874–1876), Valdivia (1898–1899), and SMS Planet (1906–1907). These observations reveal a mean 20th century ocean warming that extends over the upper 750 m, and a spatial pattern of subsurface warming and cooling consistent with a 1°–2° southward shift of the southern subtropical gyre. These interior changes occurred largely over the last half of the 20th century, providing observational evidence for the acceleration of a multidecadal trend in subsurface Indian Ocean temperature.
    Description: GG is supported by U.S. NSF-OCE 82280500.
    Keywords: Historical temperature observations ; Indian Ocean ; Ocean warming ; Ocean heat content ; Antarctic circumpolar current
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2022-11-04
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Codillo, E., Klein, F., Dragovic, B., Marschall, H., Baxter, E., Scambelluri, M., & Schwarzenbach‬, E. Fluid‐mediated mass transfer between mafic and ultramafic rocks in subduction zones. Geochemistry Geophysics Geosystems, 23, (2022): e2021GC010206, https://doi.org/10.1029/2021gc010206.
    Description: Metasomatic reaction zones between mafic and ultramafic rocks exhumed from subduction zones provide a window into mass-transfer processes at high pressure. However, accurate interpretation of the rock record requires distinguishing high-pressure metasomatic processes from inherited oceanic signatures prior to subduction. We integrated constraints from bulk-rock geochemical compositions and petrophysical properties, mineral chemistry, and thermodynamic modeling to understand the formation of reaction zones between juxtaposed metagabbro and serpentinite as exemplified by the Voltri Massif (Ligurian Alps, Italy). Distinct zones of variably metasomatized metagabbro are dominated by chlorite, amphibole, clinopyroxene, epidote, rutile, ilmenite, and titanite between serpentinite and eclogitic metagabbro. Whereas the precursor serpentinite and oxide gabbro formed and were likely already in contact in an oceanic setting, the reaction zones formed by diffusional Mg-metasomatism between the two rocks from prograde to peak, to retrograde conditions in a subduction zone. Metasomatism of mafic rocks by Mg-rich fluids that previously equilibrated with serpentinite could be widespread along the subduction interface, within the subducted slab, and the mantle wedge. Furthermore, the models predict that talc formation by Si-metasomatism of serpentinite in subduction zones is limited by pressure-dependent increase in the silica activity buffered by the serpentine-talc equilibrium. Elevated activities of aqueous Ca and Al species would also favor the formation of chlorite and garnet. Accordingly, unusual conditions or processes would be required to stabilize abundant talc at high P-T conditions. Alternatively, a different set of mineral assemblages, such as serpentine- or chlorite-rich rocks, may be controlling the coupling-decoupling transition of the plate interface.
    Description: M. Scambelluri acknowledges the Italian Ministry of Research MUR for granting the PRIN project n. 2017ZE49E7. This research was funded by NSF-OISE (Office of International Science & Engineering, Petrology & Geochemistry) PIRE, Award #1545903, and the WHOI Ocean Ventures Fund.
    Keywords: Fluid-rock interactions ; Magnesium metasomatism ; Subduction zones ; Voltri Massif
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2022-11-06
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 36(5), (2022): e2022GB007388, https://doi.org/10.1029/2022gb007388.
    Description: The cycling of biologically produced calcium carbonate (CaCO3) in the ocean is a fundamental component of the global carbon cycle. Here, we present experimental determinations of in situ coccolith and foraminiferal calcite dissolution rates. We combine these rates with solid phase fluxes, dissolved tracers, and historical data to constrain the alkalinity cycle in the shallow North Pacific Ocean. The in situ dissolution rates of coccolithophores demonstrate a nonlinear dependence on saturation state. Dissolution rates of all three major calcifying groups (coccoliths, foraminifera, and aragonitic pteropods) are too slow to explain the patterns of both CaCO3 sinking flux and alkalinity regeneration in the North Pacific. Using a combination of dissolved and solid-phase tracers, we document a significant dissolution signal in seawater supersaturated for calcite. Driving CaCO3 dissolution with a combination of ambient saturation state and oxygen consumption simultaneously explains solid-phase CaCO3 flux profiles and patterns of alkalinity regeneration across the entire N. Pacific basin. We do not need to invoke the presence of carbonate phases with higher solubilities. Instead, biomineralization and metabolic processes intimately associate the acid (CO2) and the base (CaCO3) in the same particles, driving the coupled shallow remineralization of organic carbon and CaCO3. The linkage of these processes likely occurs through a combination of dissolution due to zooplankton grazing and microbial aerobic respiration within degrading particle aggregates. The coupling of these cycles acts as a major filter on the export of both organic and inorganic carbon to the deep ocean.
    Description: This work was funded by NSF OCE-1220301 to W.B., NSF OCE-1220600 to J.F.A., and startup funding for A.V.S.
    Description: 2022-11-06
    Keywords: Calcium carbonate ; Dissolution ; Carbon cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2022-12-10
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 49(12), (2022): e2022GL098087, https://doi.org/10.1029/2022GL098087.
    Description: Radium isotopes are powerful proxies in oceanography and hydrology. Radium mass balance models, including assessments of submarine groundwater discharge (SGD), often overlook particle scavenging (PS) as a pathway for dissolved radium removal from the world ocean. Here, we build a global ocean 226Ra mass balance model and reevaluate the potential importance of PS. We find that PS is the major 226Ra sink for the upper ocean, removing about 96% of the total input from various sources. Aside from vertical exchange with the lower ocean, SGD is the largest 226Ra source into the upper ocean. The biological pump transfers particles to the deep ocean, resulting in a major but often overlooked impact on the global 226Ra marine budget. Our findings suggest that radium mass balance models should consider PS in systems with high siliceous algae production and export fluxes and long water residence times to prevent underestimation of large-scale SGD fluxes.
    Description: The authors are grateful to the many researchers and funding agencies responsible for the collection of data and quality control. The authors are very grateful to Jesus Gomez-Velez of Vanderbilt University for suggesting the statistical approach for distribution expansion and helping with the coding. The authors from Ocean University of China were funded by the Natural Science Foundation of China 41876075, 42130410, and 91958214, and Fundamental Research Funds for the Central Universities China 201962003 and 202072001. Funding for M.A.C. was provided by U.S. National Science Foundation OCE-1736277 and a WHOI-OUC Cooperative Research Initiative award. Valentí Rodellas acknowledges financial support from the Beatriu de Pinós postdoctoral programme of the Catalan Government (2019-BP-00241).
    Description: 2022-12-10
    Keywords: Particle scavenging ; Submarine groundwater discharge ; Siliceous algae ; Global ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Long, M. D., Wagner, L. S., King, S. D., Evans, R. L., Mazza, S. E., Byrnes, J. S., Johnson, E. A., Kirby, E., Bezada, M. J., Gazel, E., Miller, S. R., Aragon, J. C., & Liu, S. Evaluating models for lithospheric loss and intraplate volcanism beneath the Central Appalachian Mountains. Journal of Geophysical Research: Solid Earth, 126(10), (2021): e2021JB022571, https://doi.org/10.1029/2021JB022571.
    Description: The eastern margin of North America has been shaped by a series of tectonic events including the Paleozoic Appalachian Orogeny and the breakup of Pangea during the Mesozoic. For the past ∼200 Ma, eastern North America has been a passive continental margin; however, there is evidence in the Central Appalachian Mountains for post-rifting modification of lithospheric structure. This evidence includes two co-located pulses of magmatism that post-date the rifting event (at 152 and 47 Ma) along with low seismic velocities, high seismic attenuation, and high electrical conductivity in the upper mantle. Here, we synthesize and evaluate constraints on the lithospheric evolution of the Central Appalachian Mountains. These include tomographic imaging of seismic velocities, seismic and electrical conductivity imaging along the Mid-Atlantic Geophysical Integrative Collaboration array, gravity and heat flow measurements, geochemical and petrological examination of Jurassic and Eocene magmatic rocks, and estimates of erosion rates from geomorphological data. We discuss and evaluate a set of possible mechanisms for lithospheric loss and intraplate volcanism beneath the region. Taken together, recent observations provide compelling evidence for lithospheric loss beneath the Central Appalachians; while they cannot uniquely identify the processes associated with this loss, they narrow the range of plausible models, with important implications for our understanding of intraplate volcanism and the evolution of continental lithosphere. Our preferred models invoke a combination of (perhaps episodic) lithospheric loss via Rayleigh-Taylor instabilities and subsequent small-scale mantle flow in combination with shear-driven upwelling that maintains the region of thin lithosphere and causes partial melting in the asthenosphere.
    Description: The authors acknowledge support from the U.S. National Science Foundation EarthScope and GeoPRISMS programs via grants EAR-1460257 (R. L. Evans), EAR-1249412 (E. Gazel), EAR-1249438 (E. A. Johnson), EAR-1250988 (S. D. King), EAR-1251538 (E. Kirby), and EAR-1251515 (M. D. Long). The collection and dissemination of most of the geophysical data and models discussed in this study were facilitated by the Incorporated Research Institutions for Seismology (IRIS). The facilities of the IRIS Consortium are supported by the United States National Science Foundation under Cooperative Agreement EAR-1261681.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bo, T., Ralston, D. K., Kranenburg, W. M., Geyer, W. R., & Traykovski, P. High and variable drag in a sinuous estuary with intermittent stratification. Journal of Geophysical Research: Oceans, 126(10), (2021): e2021JC017327, https://doi.org/10.1029/2021JC017327
    Description: In field observations from a sinuous estuary, the drag coefficient C based on the momentum balance was in the range of 5-20 X10-3, much greater than expected from bottom friction alone. C also varied at tidal and seasonal timescales. CD was greater during flood tides than ebbs, most notably during spring tides. The ebb tide CD was negatively correlated with river discharge, while the flood tide CD showed no dependence on discharge. The large values of CD are explained by form drag from flow separation at sharp channel bends. Greater water depths during flood tides corresponded with increased values of CD, consistent with the expected depth dependence for flow separation, as flow separation becomes stronger in deeper water. Additionally, the strength of the adverse pressure gradient downstream of the bend apex, which is indicative of flow separation, correlated with CD during flood tides. While CD generally increased with water depth, CD decreased for the highest water levels that corresponded with overbank flow. The decrease in CD may be due to the inhibition of flow separation with flow over the vegetated marsh. The dependence of CD during ebbs on discharge corresponds with the inhibition of flow separation by a favoring baroclinic pressure gradient that is locally generated at the bend apex due to curvature-induced secondary circulation. This effect increases with stratification, which increases with discharge. Additional factors may contribute to the high drag, including secondary circulation, multiple scales of bedforms, and shallow shoals, but the observations suggest that flow separation is the primary source.
    Description: The research leading to these results was funded by NSF awards OCE-1634480, OCE-1634481, and OCE-2123002.
    Description: 2022-03-29
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2023-01-20
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 127(8), (2022): e2022JG006810, https://doi.org/10.1029/2022jg006810.
    Description: Submarine groundwater discharge (SGD) has been widely recognized as an important source of dissolved nutrients in coastal waters and affects nutrient biogeochemistry. In contrast, little information is available on SGD impacts on coastal carbon budgets. Here, we assessed the SGD and associated carbon (dissolved inorganic carbon [DIC] and total alkalinity [TA]) fluxes in Liaodong Bay (the largest bay of the Bohai Sea, China) and discussed their border implications for coastal DIC budget and buffering capacity. Based on 223Ra and 228Ra mass balance models, the SGD flux was estimated to be (0.92–1.43) × 109 m3 d−1. SGD was the largest contributor of DIC, accounting for 55%–77% of the total DIC sources. The low ratio (〈1) of SGD-derived TA to DIC fluxes and negative correlation between radium isotopes and pH in seawater implied that SGD would potentially reduce seawater pH in Liaodong Bay. Combining the groundwater carbon data in Liaodong Bay with literature data, we found that the SGD-derived DIC flux off China was 4–9 times greater than those from rivers. By analyzing the TA/DIC ratios in groundwater along the Chinese coast and related carbon fluxes, SGD was thought to partially reduce the CO2 buffer capacity in receiving seawater. These results obtained at the bay scale and national scale suggest that SGD is a significant component of carbon budget and may play a critical role in modulating coastal buffering capacity and atmospheric CO2 sequestration.
    Description: his research was supported by National Natural Science Foundation of China (Grant Nos. 42130703, 42007170) and the Science, Technology and Innovation Commission of Shenzhen (Grant No. 20200925174525002.
    Description: 2023-01-20
    Keywords: Submarine groundwater discharge ; Radium isotopes ; Dissolved inorganic carbon ; Total alkalinity ; Carbon budgets ; Buffering capacity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3Paleoceanography and Paleoclimatology, American Geophysical Union, 36(7), ISSN: 2572-4517
    Publication Date: 2021-09-20
    Description: Marine sedimentary records are a key archive when reconstructing past climate; however, mixing at the seabed (bioturbation) can strongly influence climate records, especially when sedimentation rates are low. By commingling the climate signal from different time periods, bioturbation both smooths climate records, by damping fast climate variations, and creates noise when measurements are made on samples containing small numbers of individual proxy carriers, such as foraminifera. Bioturbation also influences radiocarbon-based age-depth models, as sample ages may not represent the true ages of the sediment layers from which they were picked. While these effects were first described several decades ago, the advent of ultra-small-sample $^{14}$C dating now allows samples containing very small numbers of foraminifera to be measured, thus enabling us to directly measure the age-heterogeneity of sediment for the first time. Here, we use radiocarbon dates measured on replicated samples of 3-30 foraminifera to estimate age-heterogeneity for five marine sediment cores with sedimentation rates ranging from 2-30 cm kyr$^{-1}$. From their age-heterogeneities and sedimentation rates we infer mixing depths of 10-20 cm for our core sites. Our results show that when accounting for age-heterogeneity, the true error of radiocarbon dating can be several times larger than the reported measurement. We present estimates of this uncertainty as a function of sedimentation rate and the number of individuals per radiocarbon date. A better understanding of this uncertainty will help us to optimise radiocarbon measurements, construct age models with appropriate uncertainties and better interpret marine paleo records.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2022-01-07
    Description: Microplastic (MP) pollution has been found in the Southern Ocean surrounding Antarctica, but many local regions within this vast area remain uninvestigated. The remote Weddell Sea contributes to the global thermohaline circulation, and one of the two Antarctic gyres is located in that region. In the present study, we evaluate MP (〉300 μm) concentration and composition in surface (n = 34) and subsurface water samples (n = 79, ∼11.2 m depth) of the Weddell Sea. All putative MP were analyzed by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. MP was found in 65% of surface and 11.4% of subsurface samples, with mean (±standard deviation (SD)) concentrations of 0.01 (±0.01 SD) MP m–3 and 0.04 (±0.1 SD) MP m–3, respectively, being within the range of previously reported values for regions south of the Polar Front. Additionally, we aimed to determine whether identified paint fragments (n = 394) derive from the research vessel. Environmentally sampled fragments (n = 101) with similar ATR-FTIR spectra to reference paints from the research vessel and fresh paint references generated in the laboratory were further subjected to micro-X-ray fluorescence spectroscopy (μXRF) to compare their elemental composition. This revealed that 45.5% of all recovered MP derived from vessel-induced contamination. However, 11% of the measured fragments could be distinguished from the reference paints via their elemental composition. This study demonstrates that differentiation based purely on visual characteristics and FTIR spectroscopy might not be sufficient for accurately determining sample contamination sources.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2022-01-07
    Description: Vegetation biomass is a globally important climate-relevant terrestrial carbon pool. Landsat, Sentinel-2 and Sentinel-1 satellite missions provide a landscape-level opportunity to upscale tundra vegetation communities and biomass in high latitude terrestrial environments. We assessed the applicability of landscape-level remote sensing for the low Arctic Lena Delta region in Northern Yakutia, Siberia, Russia. The Lena Delta is the largest delta in the Arctic and is located North of the treeline and the 10 °C July isotherm at 72° Northern Latitude in the Laptev Sea region. During the LENA2018 expedition, we set up plots for plant projective cover and Above Ground Biomass (AGB) and sampled shrubs for shrub-ring analyses. AGB is providing the magnitude of the carbon flux, whereas stand age is irreplaceable to provide the cycle rate. AGB data and shrub age data clearly show a separation between i) low disturbance landscape types with dominant AGB moss contribution, but always low vascular plant AGB (〈0.5 kg m-2) characterised by old shrubs of several decades of stand age versus ii) a much higher vascular plant AGB contribution (〉 0.5 kg m-2) with only young shrubs in high disturbance regimes. The low disturbance regimes are represented on the Holocene and Pleistocene delta terraces in form of azonal polygonal tundra complexes and softly dissected valleys with zonal tussock tundra. In contrast, the high disturbance regimes are sites of thermo-erosion such as along thermo-erosional valleys and on floodplains. We upscaled AGB and above ground carbon pool ages using a Sentinel-2 satellite acquisition from early August 2018. We classified via classification training using Elementary Sampling Units that are the 30 m x 30 m vegetation field plots. We then used the land cover classes and grouped them according to their settings either in high disturbance or low disturbance regimes with each associated AGB value ranges and shrub age regimes. We also evaluated circum-Arctic harmonized ESA GlobPermafrost land cover and vegetation height remote sensing products covering subarctic to Arctic land cover types for the central Lena Delta. The products are freely available and published in the PANGAEA data repository under https://doi.org/10.1594/PANGAEA.897916 and https://doi.org/10.1594/PANGAEA.897045. ESA GlobPermafrost land cover and vegetation height remote sensing products and our Sentinel-2 derived AGB product for the central Lena Delta shows realistic spatial patterns of landcover classes and biomass distribution at landscape level. However, in all products, the high biomass patches of high shrubs in the tundra landscape could not spatially be resolved as they are confined to patchy and linear distribution, not representing large enough areas suitable for upscaling. We found that high disturbance regimes with linked high and rapid AGB fluxes are distributed mainly on the floodplains and as patches along thermoerosioal features, e.g. valleys. Whereas the low disturbance landscapes on Yedoma upland tundra and Holocene terraces occur with larger area coverage representing decades slower and in magnitude smaller AGB fluxes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2021-12-23
    Description: Methane emissions from northern high latitude wetlands constitute a major uncertainty in the atmospheric methane (CH4) budget during the Holocene. To reconstruct northern wetland methane emissions, we used an empirical model based on syntheses of observations of peat initiation from more than 3600 radiocarbon-dated basal peat ages, plant-macrofossil-derived peatland type from more than 250 peat cores from sites across the northern high latitudes, and observed CH4 emissions averaged from modern-day wetland types in order to explore the effects of wetland expansion and changes in wetland type. Peatland basal ages and plant macrofossil records showed the widespread formation of fens in major northern wetland complexes before 8000 BP. After 8000 BP, new fen formation continued, but widespread peatland succession (to bogs) and permafrost aggradation also occurred. Reconstructed CH4 emissions from peatlands increased rapidly between 10,600 BP and 6900 BP due to fen formation and expansion, then stabilized after 5000 BP at 42 ± 25 Tg CH4 y-1, as high methane-emitting fens transitioned to lower methane-emitting bogs and permafrost peatlands. Permafrost formation in northern peatlands after 1000 BP decreased CH4 emissions by 20% to 34 ± 21 Tg y-1 by the present day. Warming temperatures, changes in peatland hydrology, and permafrost thaw will likely change the magnitude of northern peatland emissions in the future.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev , info:eu-repo/semantics/conferenceObject
    Format: application/zip
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2021-12-26
    Description: Infrastructure and anthropogenic impacts are expanding across the Arctic. A consistent record of human impact is required in order to quantify the changes and to assess climate change impacts on the communities. We derived a first panarctic satellite-based record of expanding infrastructure and anthropogenic impacts along all permafrost affected coasts (100 km buffer) within the H2020 project Nunataryuk based on Sentinel-1/2 satellite imagery. C-band synthetic aperture radar and multi-spectral information is combined through a machine learning framework. Depending on region, we identified up to 50% more information (human presence) than in OpenStreetMap. The combination with satellite records on vegetation change (specifically NDVI from Landsat since 2000) allowed quantification of recent expansion of infrastructure. Most of the expanded human presence occurred in Russia related predominantly to oil/gas industry. The majority of areas with human presence will be subject to thaw by mid-21st century based on ground temperature trends derived from the ESA CCI+ Permafrost time series (1997-2019). Of specific concern in this context are also settlements located directly at permafrost affected coasts. An efficient erosion rate monitoring scheme needs to be developed and combined with settlement records in order to assess the risk for local communities and infrastructure. Relevant progress in the framework of the ESA EO4PAC project will be discussed.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3AGU Fall Meeting 2021, Online, 2021-12-13-2021-12-17American Geophysical Union
    Publication Date: 2021-12-26
    Description: Retrogressive thaw slumps (RTS) are typical landforms indicating processes of rapid thawing and degrading permafrost. Their abundance is increasing in many regions and quantifying their dynamics is of high importance for assessing geomorphic, hydrologic, and biogeochemical impacts of climate change in the Arctic. Here we present a deep-learning (DL) based semantic segmentation framework to detect RTS, using high-resolution multi-spectral PlanetScope, topographic (ArcticDEM elevation and slope), and medium-resolution multi-temporal Landsat Trend data. We created a highly automated processing pipeline, which is designed to allow reproducible results and to be flexible for multiple input data types. The processing workflow is based on the pytorch deep-learning framework and includes a variety of different segmentation architectures (UNet, UNet++, DeepLabV3), backbones and includes common data transformation techniques such as augmentation or normalization. We tested (training, validation) our DL based model in six different regions of 100 to 300 km² size across Canada, and Siberia. We performed a regional cross-validation (5 regions training, 1 region validation) to test the spatial robustness and transferability of the algorithm. Furthermore, we tested different architectures, backbones and loss-functions to identify the best performing and most robust parameter sets. For training the models we created a database of manually digitized and validated RTS polygons. The resulting model performance varied strongly between different regions with maximum Intersection over Union (IoU) scores between 0.15 and 0.58. The strong regional variation emphasizes the need for sufficiently large training data, which is representative of the diversity of RTS types. However, the creation of good training data proved to be challenging due to the fuzzy definition and delineation of RTS. We are further continuing to improve the usability and the functionality to add further datasets and classes. We will show first results from the upscaling beyond small test areas towards large spatial clusters of extensive RTS presence e.g. Peel Plateau in NW Canada.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2021-12-26
    Description: With the Earth’s climate rapidly warming, the Arctic represents one of the most vulnerable regions to environmental change. These northern high latitude regions experience intensified fire seasons and especially tundra fires are projected to become more frequent and severe. Fires in permafrost regions have extensive impacts, including the initiation of thermokarst (rapid thaw of ice-rich ground), as they combust the upper organic soil layers which provide insulation to the permafrost below. Rapid permafrost thaw is, thus, often observable in fire scars in the first years post-disturbance. In polygonal ice-wedge landscapes, this becomes most prevalent through melting ice wedges and degrading troughs. The further these ice wedges degrade, the more troughs will likely connect and build an extensive hydrological network with changing patterns and degrees of connectivity that influences hydrology and runoff. While subsiding troughs over melting ice wedges may host new ponds, an increasing connectivity may also subsequently lead to more drainage of ponds, which in turn can limit further thaw and help stabilize the landscape. To quantify the changes in such dynamic landscapes over large regions, highly automated methods are needed that allow extracting information on the geomorphic state and changes over time of ice-wedge trough networks from remote sensing data. We developed a computer vision algorithm to automatically derive ice-wedge polygonal networks and the current microtopography of the degrading troughs from very high resolution, airborne laserscanning-based digital terrain models. We represent the networks as graphs (a concept from the computer sciences to describe complex networks) and apply methods from graph theory to describe and quantify hydrological network characteristics of the changing landscape. In fire scars, we especially observe rapidly growing networks and fast micromorphological change in those degrading troughs. In our study, we provide a space-for-time substitution comparing fire scars throughout the Alaskan tundra of up to 70 years since the fire disturbance, to show how this type of disturbed landscape evolves over time.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3AGU Fall Meeting 2021, Online, 2021-12-13-2021-12-17American Geophysical Union
    Publication Date: 2021-12-26
    Description: Using our custom visualization tool for multitemporal Landsat satellite imagery we discovered, to our knowledge, an undocumented mega-landslide in far-east Siberia, which occurred in summer 2017 (https://bit.ly/2WYRLM1; 61.55°N; 170.01°E). To create and visualize this unique dataset, we processed temporal trends of multispectral indices of 〉100,000 Landsat images for a period from 2000-2019 using the freely available Google Earth Engine cloud processing platform (https://ingmarnitze.users.earthengine.app/view/hotspottcvisapp). The megaslide has a size of 3.66 km² and using the ArcticDEM data we estimate a volume movement of ~20 Mm³. With this size and volume, the landslide is among the largest globally known in recent decades. The landslide is accompanied by a smaller one (0.31 km², 1 Mm³) about 600 m further east, which already occurred in summer 2015. The large landslide caused the formation of several small lakes by blocking two valleys with debris and within newly formed crevasses near the hilltop, which are still persisting as of August 2021. As this event occurred in a remote valley far from any settlement, no visible damage to infrastructure or human livelihoods was detected. The remoteness has likely led to being not detected, like many similar, albeit a lot smaller, erosion features in the Arctic permafrost region. In this presentation we will show the main properties of the landslide, potential trigger mechanisms in the traditional sense. As this region is located along the fringes of permafrost presence we will discuss its potential connection to the rapidly warming climate in the high latitudes. Further, we will discuss how such a large event remained undetected for several years. We discuss and highlight the value of our landscape change visualization tool based on Landsat trend analysis (see Nitze et al., AGU 2020), which helped us to identify this extreme event. With more and more available data sources, this tool in addition to automated image analysis (e.g. deep-learning) or seismic analysis will help to uncover the hidden processes and dynamics of the Earth’s surface.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3AGU Fall Meeting 2021, Online, 2021-12-13-2021-12-17American Geophysical Union
    Publication Date: 2021-12-26
    Description: Several decades of research have provided insight into patterns of and controls on thermokarst initiation and expansion, yet studies tend to focus on individual types of thermokarst (i.e., thaw lake formation and subsequent drainage) in particular regions. Today, we are left with uneven knowledge about abrupt permafrost thaw both conceptually and regionally. The goal of this presentation is to summarize recent advancements in monitoring thermokarst and its impact on soil, vegetation, and water while also framing a call to action for the next decade of research. Over the next decade, permafrost researchers must align their efforts on several fronts to not only increase our knowledge about changing permafrost but to align this knowledge with key community and policy needs. To support climate change planning and adaptation, northern communities need future thaw vulnerability mapped at scales relevant to their needs, which will require a suite of downscaled and new mapping and remote sensing products. Thermokarst predisposition maps based on circumpolar datasets greatly overestimate the area vulnerable to thermokarst, which can lead to poor planning and climate anxiety. In some situations, existing mapping products may be useful for downscaling with more detailed input data. In other situations, entirely new approaches may be required to support local action. A second key need for community relevant research is the ability to detect and monitor early warning indicators of thermokarst. Such information is needed to support scenario planning and to help mitigate the risks to social, cultural, and physical infrastructure created by permafrost change. We are evaluating the potential for using changes in vegetation, wetting/drying and topography as early warning indicators of thermokarst, all of which can be remotely sensed. Finally, integrating fine-scale disturbances such as thermokarst into large scale models remains a key challenge but critical for supporting sound climate policy. While a diversity of permafrost modeling approaches is necessary, we outline guiding principles that will help enhance model comparisons, assimilation of simulated data across spatiotemporal scales, and the ability for policy decisions to be rapidly informed by emerging science on permafrost change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3American Geophysical Union Conference 2021, Hybrid Online and in New Orleans, 2021-12-13-2021-12-17AGU 2021, American Geophysical Union
    Publication Date: 2022-02-15
    Description: As air temperatures rise and sea ice cover declines in the Arctic, permafrost coastal cliffs thaw more rapidly and wave energy rises. Thus, as the open water season continues to lengthen, climate change triggers a large part of the Arctic shoreline to become increasingly vulnerable to erosion. Arctic erosion supplies nutrient-laden and carbon-rich sediment into nearshore ecosystems. A retreating coastline also has consequences for residential, cultural, and industrial infrastructure. Despite its importance, erosion is currently neglected in global climate models, and existing physics-based numerical models of Arctic shoreline erosion are too complex and regionally-focused to be applied on a pan-Arctic scale. Here, we apply our simplified numerical erosion model, ArcticBeach v1.0, to the entire Arctic coastline. ArcticBeach v1.0 has previously been shown to simulate retreat rates at two sites that differ substantially in their main mechanisms of retreat (sub-aerial erosion/thaw slumping versus notch/block erosion). The model uses heat and sediment volume balances in order to predict horizontal cliff retreat and vertical erosion of a fronting beach. It contains an erosion module that uses empirical equations to estimate cross-shore sediment transport, coupled to a storm surge module forced by wind. We present Arctic maps of regional variation in trends in 2-meter air temperature, sea ice concentration, and wind speed.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 22(3), (2021): e2020GC009472, https://doi.org/10.1029/2020GC009472.
    Description: Carbonatite volcanism remains poorly understood compared to silicic volcanism due to the scarcity of carbonatite volcanoes worldwide and because volcanic H2O and CO2—major components in carbonatite volcanic systems—are not well preserved in the rock record. To further our understanding of carbonatite genesis, we utilize the non-traditional thallium (Tl) isotope system in Khanneshin carbonatites in Afghanistan. These carbonatites contain 250–30,000 ng/g Tl and have ε205Tl values (−4.6 to +4.6) that span much of the terrestrial igneous range. We observe that δ18OVSMOW (+8.6‰ to +23.5‰) correlates positively with δ13CVPDB (−4.6‰ to +3.5‰) and ε205Tl up to δ18O = 15‰. Rayleigh fractionation of calcite from an immiscible CO2-H2O fluid with a mantle-like starting composition can explain the δ18O and δ13C—but not ε205Tl—trends. Biotite fractionates Tl isotopes in other magmatic settings, so we hypothesize that a Tl-rich hydrous brine caused potassic metasomatism (i.e., biotite fenitization) of wall rock that increased the ε205Tl of the residual magma-fluid reservoir. Our results imply that, in carbonatitic volcanic systems, simultaneous igneous differentiation and potassic metasomatism increase ε205Tl, δ18O, δ13C, and light rare earth element concentrations in residual fluids. Our fractionation models suggest that the Tl isotopic compositions of the primary magmas were among the isotopically lightest (less than or equal to ε205Tl = −4.6) material derived from the mantle for which Tl isotopic constraints exist. If so, the ultimate source of Tl in Khanneshin lavas—and perhaps carbonatites elsewhere—may be recycled ocean crust.
    Description: This project was supported by funding from Woods Hole Oceanographic Institution Independent Research & Development funds and the National Science Foundation (Award #1911699).
    Description: 2021-07-27
    Keywords: Carbonatite volcanism ; Metasomatism ; Recycled ocean crust ; Stable isotopes ; Thallium isotopes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lattaud, J., Broder, L., Haghipour, N., Rickli, J., Giosan, L., & Eglinton, T., I. Influence of hydraulic connectivity on carbon burial efficiency in Mackenzie Delta lake sediments. Journal of Geophysical Research: Biogeosciences, 126(3), (2021): e2020JG006054, https://doi.org/10.1029/2020JG006054.
    Description: The Arctic is undergoing accelerated changes in response to ongoing modifications to the climate system, and there is a need for local to regional scale records of past climate variability in order to put these changes into context. The Mackenzie Delta region in northern Canada is populated by numerous small shallow lakes. They are classified as no-, low-, and high-closure (NC, LC, and HC, respectively) lakes, reflecting varying degrees of connection to the river main stem, and have different sedimentation characteristics. This study examines sedimentological (mineral surface area, grain size), carbon isotopic (bulk and molecular-level) and inorganic isotopic (neodymium) characteristics of sediment cores from three lakes representing each class. We find that HC lake sediments exhibit strikingly different properties from the other lake sediments. Specifically, they are characterized by higher organic carbon loadings per unit mineral surface area and with relatively minor influence from allochthonous, petrogenic (rock-derived) organic carbon. In contrast, LC and NC lakes have the potential to record basin-scale climatic changes at a high resolution by virtue of enhanced detrital sedimentation. Overall the delta lakes have the capacity to bury about 2 MtC year−1, with little changes in the last 200 years. However, in the (near) future, an increased number of high closure lakes might change the carbon burial efficiency of the Mackenzie Delta as they seem to retain less carbon than NC and LC lakes.
    Description: J. Lattaud was funded by a Rubicon grant (019.183EN.002) from NWO, Netherlands Organization for scientific research.
    Keywords: Bulk radiocarbon ; Carbon isotopes ; Mackenzie Delta ; Mineral loading ; N-alkanes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Jackson, R. L., Gabric, A. J., Matrai, P. A., Woodhouse, M. T., Cropp, R., Jones, G. B., Deschaseaux, E. S. M., Omori, Y., McParland, E. L., Swan, H. B., & Tanimoto, H. Parameterizing the impact of seawater temperature and irradiance on dimethylsulfide (DMS) in the Great Barrier Reef and the contribution of coral reefs to the global sulfur cycle. Journal of Geophysical Research:Oceans, 126(3), (2021): e2020JC016783, https://doi.org/10.1029/2020JC016783.
    Description: Biogenic emissions of dimethylsulfide (DMS) are an important source of sulfur to the atmosphere, with implications for aerosol formation and cloud albedo over the ocean. Natural aerosol sources constitute the largest uncertainty in estimates of aerosol radiative forcing and climate and thus, an improved understanding of DMS sources is needed. Coral reefs are strong point sources of DMS; however, this coral source of biogenic sulfur is not explicitly included in climatologies or in model simulations. Consequently, the role of coral reefs in local and regional climate remains uncertain. We aim to improve the representation of tropical coral reefs in DMS databases by calculating a climatology of seawater DMS concentration (DMSw) and sea-air flux in the Great Barrier Reef (GBR), Australia. DMSw is calculated from remotely sensed observations of sea surface temperature and photosynthetically active radiation using a multiple linear regression model derived from field observations of DMSw in the GBR. We estimate that coral reefs and lagoon waters in the GBR (∼347,000 km2) release 0.03–0.05 Tg yr−1 of DMS (0.02 Tg yr−1 of sulfur). Based on this estimate, global tropical coral reefs (∼600,000 km2) could emit 0.08 Tg yr−1 of DMS (0.04 Tg yr−1 of sulfur), with the potential to influence the local radiative balance.
    Description: Australian Research Council. Grant Number: DP150101649 National Science Foundation (NSF). Grant Number: 1543450 Ministry of Education, Culture, Sports, Science and Technology Grants-in-Aid for Scientific Research. Grant Number: 23310016,16H02967,24241010,15H01732 Ministry of Education, Culture, Sports, Science and Technology Grant-in-Aid for Young Scientists. Grant Number: 17K12812
    Keywords: Coral reef ; Dimethylsulfide (DMS) ; Photosynthetically active radiation ; Physiological stress ; Sea-air flux ; Sea surface temperature
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 126(3), (2021): e2020JB021136, https://doi.org/10.1029/2020JB021136.
    Description: The Geomagnetic Polarity Time Scale (GPTS) provides a basis for the geological timescale, quantifies geomagnetic field behavior, and gives a time framework for geologic studies. We build a revised Middle to Late Jurassic GPTS by using a new multiscale magnetic profile, combining sea surface, midwater, and autonomous underwater vehicle near-bottom magnetic anomaly data from the Hawaiian lineation set in the Pacific Jurassic Quiet Zone (JQZ). We correlate the new profile with a previously published contemporaneous magnetic sequence from the Japanese lineation set. We then establish geomagnetic polarity block models as a basis for our interpretation of the origin and nature of JQZ magnetic anomalies and a GPTS. A significant level of coherency between short-wavelength anomalies for both the Japanese and Hawaiian lineation magnetic anomaly sequences suggests the existence of a regionally coherent field during this period of rapid geomagnetic reversals. Our study implies the rapid onset of the Mesozoic Dipole Low from M42 through M39 and then a subsequent gradual recovery in field strength into the Cenozoic. The new GPTS, together with the Japanese sequence, extends the magnetic reversal history from M29 back in time to M44. We identify a zone of varying, difficult-to-correlate anomalies termed the Hawaiian Disturbed Zone, which is similar to the zone of low amplitude, difficult-to-correlate anomalies in the Japanese sequence termed the Low Amplitude Zone (LAZ). We suggest that the LAZ, bounded by M39–M41 isochrons, may in fact represent the core of what is more commonly known as the JQZ crust.
    Description: This study is funded by National Science Foundation grants OCE-1029965 (Tominaga, Tivey, and Lizarralde) and OCE-1233000 (Tominaga and Tivey) and OCE-1029573 (Sager).
    Description: 2021-07-21
    Keywords: AUV ; Jurassic Quiet Zone ; Marine magnetic anomalies
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Catunda, M. C. A., Bahr, A., Kaboth-Bahr, S., Zhang, X., Foukal, N. P., & Friedrich, O. Subsurface heat channel drove sea surface warming in the high-latitude North Atlantic during the Mid-Pleistocene Transition. Geophysical Research Letters, 48(11), (2021): e2020GL091899, https://doi.org/10.1029/2020GL091899.
    Description: The Mid-Pleistocene Transition (MPT, 1,200–600 ka) marks the rapid expansion of Northern Hemisphere (NH) continental ice sheets and stronger precession pacing of glacial/interglacial cyclicity. Here, we investigate the relationship between thermocline depth in the central North Atlantic, subsurface northward heat transport and the initiation of the 100-kyr cyclicity during the MPT. To reconstruct deep-thermocline temperatures, we generated a Mg/Ca-based temperature record of deep-dwelling (∼800 m) planktonic foraminifera from mid-latitude North Atlantic at Site U1313. This record shows phases of pronounced heat accumulation at subsurface levels during the mid-MPT glacial driven by increased outflow of the Mediterranean Sea. Concurrent warming of the subtropical thermocline and subpolar surface waters indicates enhanced (subsurface) inter-gyre transport of warm water to the subpolar North Atlantic, which provided moisture for ice-sheet growth. Precession-modulated variability in the northward transport of subtropical waters imprinted this orbital cyclicity into NH ice-sheets after Marine Isotope Stage 24.
    Description: Catunda and A. Bahr were funded by DFG project BA 3809/8, O.F. by DFG project FR 2544/11. S. Kaboth-Bahr acknowledges an Open-Topic Post-Doc Grant from the University of Potsdam. X.Z. was funded via the Lanzhou University (project 225000–830006) and National Science Foundation of China (Grant 42075047). N.F. was funded by the NSF Grant 1756361. Open access funding enabled and organized by Projekt DEAL.
    Keywords: Paleoceanography ; Mid-Pleistocene transition ; Subsurface heat transport ; Mediterranean outflow ; Inter-gyre connectivity ; North Atlantic gyres
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 48(5), (2021): e2020GL091461, https://doi.org/10.1029/2020GL091461.
    Description: We investigate how the near-surface chlorophyll (CHL)-a evolves in Gulf Stream (GS) warm-core rings (WCRs) and cold-core rings (CCRs) using multi-platform satellite observations. Averaged CHL anomaly (CHLA) within the rings exhibits both positive and negative linear trends during the evolution of the WCRs while negative trends dominate in CCRs. This difference is associated with a variety of physical processes occurring during the evolution process. Meanwhile, eddy-centric analysis reveals four spatial patterns of CHLA long-term trends, some of which highlights the importance of rings in shaping surface CHL. Short-term fluctuations of CHLA in WCRs and CCRs are closely correlated with mixed layer depth and sea surface temperature anomaly and highlight the complex interplay between multiple mechanisms. In addition, we find higher concentration CHL in some WCRs than that in CCRs during the same season, providing an alternative view of the characteristics of the surface ecosystem in Gulf Stream rings.
    Description: This work was supported by the National Science Foundation Ocean Science Division under grant OCE-1558960. JN was supported by the Fundamental Research Funds for the Central Universities (Hohai University) under grant B200203005 and the China Scholarship Council.
    Description: 2021-08-16
    Keywords: Gulf Stream rings ; Mesoscale eddy ; Physical-biological interaction ; Satellite observations ; Surface chlorophyll
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(4), (2021): e2020JC016789, https://doi.org/10.1029/2020JC016789.
    Description: Argo profiling floats and L-band passive microwave remote sensing have significantly improved the global sampling of sea surface salinity (SSS) in the past 15 years, allowing the study of the range of SSS seasonal variability using concurrent satellite and in situ platforms. Here, harmonic analysis was applied to four 0.25° satellite products and two 1° in situ products between 2016 and 2018 to determine seasonal harmonic patterns. The 0.25° World Ocean Atlas (WOA) version 2018 was referenced to help assess the harmonic patterns from a long-term perspective based on the 3-year period. The results show that annual harmonic is the most characteristic signal of the seasonal cycle, and semiannual harmonic is important in regions influenced by monsoon and major rivers. The percentage of the observed variance that can be explained by harmonic modes varies with products, with values ranging between 50% and 72% for annual harmonic and between 15% and 19% for semiannual harmonic. The large spread in the explained variance by the annual harmonic reflects the large disparity in nonseasonal variance (or noise) in the different products. Satellite products are capable of capturing sharp SSS features on meso- and frontal scales and the patterns agree well with the WOA 2018. These products are, however, subject to the impacts of radiometric noises and are algorithm dependent. The coarser-resolution in situ products may underrepresent the full range of high-frequency small scale SSS variability when data record is short, which may have enlarged the explained SSS variance by the annual harmonic.
    Description: L. Yu was funded by NASA Ocean Salinity Science Team (OSST) activities through Grant 80NSSC18K1335. FMB was funded by the NASA OSST through Grant 80NSSC18K1322. E. P. Dinnat was funded by NASA through Grant 80NSSC18K1443. This research is carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.
    Description: 2021-09-17
    Keywords: Argo ; L-band passive microwave radiometer ; Remote sensing ; Sea surface salinity ; Seasonal cycle ; Water cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Schultz, C., Doney, S. C., Hauck, J., Kavanaugh, M. T., & Schofield, O. Modeling phytoplankton blooms and inorganic carbon responses to sea-ice variability in the West Antarctic Peninsula. Journal of Geophysical Research: Biogeosciences, 126(4), (2021): e2020JG006227, https://doi.org/10.1029/2020JG006227.
    Description: The ocean coastal-shelf-slope ecosystem west of the Antarctic Peninsula (WAP) is a biologically productive region that could potentially act as a large sink of atmospheric carbon dioxide. The duration of the sea-ice season in the WAP shows large interannual variability. However, quantifying the mechanisms by which sea ice impacts biological productivity and surface dissolved inorganic carbon (DIC) remains a challenge due to the lack of data early in the phytoplankton growth season. In this study, we implemented a circulation, sea-ice, and biogeochemistry model (MITgcm-REcoM2) to study the effect of sea ice on phytoplankton blooms and surface DIC. Results were compared with satellite sea-ice and ocean color, and research ship surveys from the Palmer Long-Term Ecological Research (LTER) program. The simulations suggest that the annual sea-ice cycle has an important role in the seasonal DIC drawdown. In years of early sea-ice retreat, there is a longer growth season leading to larger seasonally integrated net primary production (NPP). Part of the biological uptake of DIC by phytoplankton, however, is counteracted by increased oceanic uptake of atmospheric CO2. Despite lower seasonal NPP, years of late sea-ice retreat show larger DIC drawdown, attributed to lower air-sea CO2 fluxes and increased dilution by sea-ice melt. The role of dissolved iron and iron limitation on WAP phytoplankton also remains a challenge due to the lack of data. The model results suggest sediments and glacial meltwater are the main sources in the coastal and shelf regions, with sediments being more influential in the northern coast.
    Description: C. Schultz, S. C. Doney, M. T. Kavanaugh, and O. Schofield acknowledge support by the US National Science Foundation (Grant no. PLR-1440435), and C. Schultz and S. C. Doney acknowledge support from the University of Virginia. This research has also received funding from the Helmholtz Young Investigator Group Marine Carbon and Ecosystem Feedbacks in the Earth System (MarESys), Grant number VH-NG-1301.
    Keywords: Air-sea fluxes ; Biogeochemical modeling ; Inorganic carbon cycle ; Phytoplankton bloom ; Sea ice ; West Antarctic Peninsula
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Grooms, I., Loose, N., Abernathey, R., Steinberg, J. M., Bachman, S. D., Marques, G., Guillaumin, A. P., & Yankovsky, E. Diffusion-Based smoothers for spatial filtering of gridded geophysical data. Journal of Advances in Modeling Earth Systems, 13(9), (2021): e2021MS002552, https://doi.org/10.1029/2021MS002552.
    Description: We describe a new way to apply a spatial filter to gridded data from models or observations, focusing on low-pass filters. The new method is analogous to smoothing via diffusion, and its implementation requires only a discrete Laplacian operator appropriate to the data. The new method can approximate arbitrary filter shapes, including Gaussian filters, and can be extended to spatially varying and anisotropic filters. The new diffusion-based smoother's properties are illustrated with examples from ocean model data and ocean observational products. An open-source Python package implementing this algorithm, called gcm-filters, is currently under development.
    Description: I.G. and N.L. are supported by NSF OCE 1912332. R.A. is supported by NSF OCE 1912325. J.S. is supported by NSF OCE 1912302. S.B. and G.M. are supported by NSF OCE 1912420. A.G. and E.Y. are supported by NSF GEO 1912357 and NOAA CVP NA19OAR4310364.
    Keywords: Spatial filtering ; Coarse graining ; Data analysis
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 126(10),(2021): e2021JB022228, https://doi.org/10.1029/2021JB022228.
    Description: Seafloor massive sulfide deposits form in remote environments, and the assessment of deposit size and composition through drilling is technically challenging and expensive. To aid the evaluation of the resource potential of seafloor massive sulfide deposits, three-dimensional inverse modeling of geophysical potential field data (magnetic and gravity) collected near the seafloor can be carried out to further enhance geologic models interpolated from sparse drilling. Here, we present inverse modeling results of magnetic and gravity data collected from the active mound at the Trans-Atlantic Geotraverse hydrothermal vent field, located at 26°08′N on the Mid-Atlantic Ridge, using autonomous underwater vehicle and submersible surveying. Both minimum-structure and surface geometry inverse modeling methods were utilized. Through deposit-scale magnetic modeling, the outer extent of a chloritized alteration zone within the basalt host rock below the mound was resolved, providing an indication of the angle of the rising hydrothermal fluid and the depth and volume of seawater/hydrothermal mixing zone. The thickness of the massive sulfide mound was determined by modeling the gravity data, enabling the tonnage of the mound to be estimated at 2.17 ± 0.44 Mt through this geophysics-based, noninvasive approach.
    Description: The authors would like to thank the captain, crew, and scientific team from the 2016 R/V Meteor M127 and 1994 R/V Yokosuka MODE'94 cruises for all their work collecting the data modeled in this study. C. Galley is funded through an NSERC Discovery Grant and Memorial University's School of Graduate Studies Grant.
    Description: 2022-03-29
    Keywords: Seafloor massive sulfide deposit ; Potential field modeling ; Inverse modeling ; Gravity ; Magnetics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Beasley, C., Kender, S., Giosan, L., Bolton, C. T., Anand, P., Leng, M. J., Nilsson-Kerr, K., Ullmann, C. V., Hesselbo, S. P., & Littler, K. Evidence of a South Asian proto-monsoon during the Oligocene-Miocene transition. Paleoceanography and Paleoclimatology, 36(9), (2021): e2021PA004278, https://doi.org/10.1029/2021PA004278.
    Description: The geological history of the South Asian monsoon (SAM) before the Pleistocene is not well-constrained, primarily due to a lack of available continuous sediment archives. Previous studies have noted an intensification of SAM precipitation and atmospheric circulation during the middle Miocene (∼14 Ma), but no records are available to test how the monsoon changed prior to this. In order to improve our understanding of monsoonal evolution, geochemical and sedimentological data were generated for the Oligocene-early Miocene (30–20 Ma) from Indian National Gas Hydrate Expedition 01 Site NGHP-01-01A in the eastern Arabian Sea, at 2,674 m water depth. We find the initial glaciation phase (23.7–23.0 Ma) of the Oligocene-Miocene transition (OMT) to be associated with an increase in water column ventilation and water mass mixing, suggesting an increase in winter monsoon type atmospheric circulation, possibly driven by a relative southward shift of the intertropical convergence zone. During the latter part of the OMT, or “deglaciation” phase (23.0–22.7 Ma), a long-term decrease in Mn (suggestive of deoxygenation), increase in Ti/Ca and dissolution of the biogenic carbonate fraction suggest an intensification of a proto-summer SAM system, characterized by the formation of an oxygen minimum zone in the eastern Arabian Sea and a relative increase of terrigenous material delivered by runoff to the site. With no evidence at this site for an active SAM prior to the OMT we suggest that changes in orbital parameters, as well as possibly changing Tethyan/Himalayan tectonics, caused this step change in the proto-monsoon system at this intermediate-depth site.
    Description: This research forms part of a PhD study funded by the Natural Environment Research Council (NERC) Centre for Doctoral Training in Oil & Gas (grant number NE/M00578X/1) awarded to C. Beasley, and was also supported by a NERC National Environmental Isotope Facility Steering Committee grant (IP-1865-1118) awarded to S. Kender. L. Giosan acknowledges funding from USSP and WHOI and thanks colleagues from the NGHP-01 expedition. C. Ullmann acknowledges funding via NERC grant NE/N018508/1.
    Keywords: South Asian Monsoon ; Foraminiferal stable isotopes ; Trace elements ; Arabian Sea ; Oligocene-Miocene transition
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 22(5), (2021): e2020GC009608, https://doi.org/10.1029/2020GC009608.
    Description: Thallium (Tl) isotope ratios are an emerging tool that can be used to trace crustal recycling processes in arc lavas and ocean island basalts (OIBs). Thallium is a highly volatile metal that is enriched in volcanic fumaroles, but it is unknown whether degassing of Tl from subaerial lavas has a significant effect on their residual Tl isotope compositions. Here, we present Tl isotope and concentration data from degassing experiments that are best explained by Rayleigh kinetic isotope fractionation during Tl loss. Our data closely follow predicted isotope fractionation models in which TlCl is the primary degassed species and where Tl loss is controlled by diffusion and natural convection, consistent with the slow gas advection velocity utilized during our experiments. We calculate that degassing into air should be associated with a net Tl isotope fractionation factor of αnet = 0.99969 for diffusion and natural gas convection (low gas velocities) and αnet = 0.99955 for diffusion and forced gas convection (high gas velocities). We also show that lavas from three volcanoes in the Kamchatka arc exhibit Tl isotope and concentration patterns that plot in between the two different gas convection regimes, implying that degassing played an important role in controlling the observed Tl isotope compositions in these three volcanoes. Literature inspection of Tl isotope data for subaerial lavas reveals that the majority of these appear only minorly affected by degassing, although a few samples from both OIBs and arc volcanoes can be identified that likely experienced some Tl degassing.
    Description: National Science Foundation (NSF). Grant Numbers: EAR 1829546
    Keywords: Degassing ; Experiments ; Kinetic isotope fractionation ; Magma ; Thallium isotopes ; Volcanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 48(15), (2021): e2021GL092779, https://doi.org/10.1029/2021GL092779.
    Description: Double diffusion refers to a variety of turbulent processes in which potential energy is released into kinetic energy, made possible in the ocean by the difference in molecular diffusivities between salinity and temperature. Here, we present a new method for estimating the kinetic energy dissipation rates forced by double-diffusive convection using temperature and salinity data alone. The method estimates the up-gradient diapycnal buoyancy flux associated with double diffusion, which is hypothesized to balance the dissipation rate. To calculate the temperature and salinity gradients on small scales we apply a canonical scaling for compensated thermohaline variance (or ‘spice’) on sub-measurement scales with a fixed buoyancy gradient. Our predicted dissipation rates compare favorably with microstructure measurements collected in the Chukchi Sea. Fine et al. (2018), https://doi.org/10.1175/jpo-d-18-0028.1, showed that dissipation rates provide good estimates for heat fluxes in this region. Finally, we show the method maintains predictive skill when applied to a sub-sampling of the Conductivity, Temperature, Depth (CTD) data.
    Description: This work was supported by the Natural Environment Research Council (grant number NE/L002507/1).
    Keywords: Ocean mixing ; Double-diffusive convection ; Compensated thermohaline variance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(5), (2021): e2020JC017042, https://doi.org/10.1029/2020JC017042.
    Description: In frontal zones, water masses that are tens of kilometers in extent with origins in the mixed layer can be identified in the pycnocline for days to months. Here, we explore the pathways and mechanisms of subduction, the process by which water from the surface mixed layer makes its way into the pycnocline, using a submesoscale-resolving numerical model of a mesoscale front. By identifying Lagrangian trajectories of water parcels that exit the mixed layer, we study the evolution of dynamical properties from a statistical standpoint. Velocity- and buoyancy-gradients increase as water parcels experience both mesoscale (geostrophic) and submesoscale (ageostrophic) frontogenesis and subduct beneath the mixed layer into the stratified pycnocline along isopycnals that outcrop in the mixed layer. Subduction is transient and occurs in coherent regions along the front, the spatial and temporal scales of which influence the scales of the subducted water masses in the pycnocline. An examination of specific subduction events reveals a range of submesoscale features that support subduction. Contrary to the forced submesoscale processes that sequester low potential vorticity (PV) anomalies in the interior, we find that PV can be elevated in subducting water masses. The rate of subduction is of similar magnitude to previous studies (∼100 m/year), but the Lagrangian evolution of properties on water parcels and pathways that are unraveled in this study emphasize the role of submesoscale dynamics coupled with mesoscale frontogenesis.
    Description: This research was funded by the ONR CALYPSO DRI grant N00014-16-1-3130. MAF was partially funded by a Martin Fellowship from MIT.
    Keywords: Frontal dynamics ; Mixed layer ; Process study ; Submesoscale ; Vertical velocity | Lagrangian
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    facet.materialart.
    Unknown
    American Geophysical Union
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Long, M. H. Aquatic biogeochemical eddy covariance fluxes in the presence of waves. Journal of Geophysical Research: Oceans, 126(2), (2021): e2020JC016637, https://doi.org/10.1029/2020JC016637.
    Description: The eddy covariance (EC) technique is a powerful tool for measuring atmospheric exchange rates that was recently adapted by biogeochemists to measure aquatic oxygen fluxes. A review of aquatic biogeochemical EC literature revealed that the majority of studies were conducted in shallow waters where waves were likely present, and that waves biased sensor and turbulence measurements. This review identified that larger measurement heights shifted turbulence to lower frequencies, producing a spectral gap between turbulence and wave frequencies. However, some studies sampled too close to the boundary to allow for a spectral turbulence‐wave gap, and a change in how EC measurements are conducted and analyzed is needed to remove wave‐bias. EC fluxes have only been derived from the time‐averaged product of vertical velocity and oxygen, often resulting in wave‐bias. Presented is a new analysis framework for removing wave‐bias by accumulation of cross‐power spectral densities below wave frequencies. This analysis framework also includes new measurement guidelines based on wave period, currents, and measurement heights. This framework is applied to sand, seagrass, and reef environments where traditional EC analysis resulted in wave‐bias of 7.0% ± 9.2% error in biogeochemical (oxygen and H+) fluxes, while more variable and higher error was evident in momentum fluxes (10.5% ± 21.0% error). It is anticipated that this framework will lead to significant changes in how EC measurements are conducted and evaluated, and help overcome the major limitations caused by wave‐sensitive and slow‐response sensors, potentially expanding new chemical tracer applications and more widespread use of the EC technique.
    Description: This work was supported by the Independent Research & Development Program at WHOI grant 25307and NSF OCE grants 1657727 and 1633951.
    Keywords: Coral reef ; Eddy covariance ; Sand ; Seagrass ; Waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 126(2), (2021): e2020JB019962, https://doi.org/10.1029/2020JB019962.
    Description: The largest slip in great megathrust earthquakes often occurs in the 10–30 km depth range, yet seismic imaging of the material properties in this region has proven difficult. We utilize a dense onshore‐offshore passive seismic dataset from the southernmost Cascadia subduction zone where seismicity in the mantle of the subducted Gorda Plate produces S‐to‐P and P‐to‐S conversions generated within a few km of the plate interface. These conversions typically occur in the 10–20 km depth range at either the top or bottom of a ∼5 km thick layer with a high Vp/Vs that we infer to be primarily the subducted crust. We use their arrival times and amplitudes to infer the location of the top and bottom of the subducted crust as well as the velocity contrasts across these discontinuities. Comparing with both the Slab1.0 and the updated Slab2 interface models, the Slab2 model is generally consistent with the converted phases, while the Slab1.0 model is 1–2 km deeper in the 2–20 km depth range and ∼6–8 km too deep in the 10–20 km depth range between 40.25°N and 40.4°N. Comparing the amplitudes of the converted phases to synthetics for simplified velocity structures, the amplitude of the converted phases requires models containing a ∼5 km thick zone with at least a ∼10%–20% reduction in S wave velocity. Thus, the plate boundary is likely contained within or at the top of this low velocity zone, which potentially indicates a significant porosity and fluid content within the seismogenic zone.
    Description: This work is funded by National Science Foundation Award Numbers EAR‐1520690.
    Description: 2021-07-25
    Keywords: Converted phases ; Seismic imaging ; Subduction zone plate boundary
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(11), (2020): e2019JC015851, doi:10.1029/2019JC015851.
    Description: Influences of the ocean mixed layer (OML) dynamics on intensity, pathway, and landfall of October 2012 Hurricane Sandy were examined through an experiment using the Weather Research and Forecasting (WRF) model. The WRF model was run for two cases with or without coupling to the OML. The OML in the WRF was calculated by an oceanic mixed layer submodel. The initial conditions of the depth and mean water temperature of the OML were specified using Global‐FVCOM and Global‐HYCOM fields. The comparison results between these two cases clearly show that including the OML dynamics enhanced the contribution of vertical mixing to the air‐sea heat flux. When the hurricane moved toward the coast, the local OML rapidly deepened with an increase of storm wind. Intense vertical mixing brought cold water in the deep ocean toward the surface to produce a cold wake underneath the storm, with the lowest sea temperature at the maximum wind zone. This process led to a significant latent heat loss from the ocean within the storm and hence rapid drops of the air temperature and vapor mixing ratio above the sea surface. As a result, the storm was intensified as the central sea level pressure dropped. Improving air pressure simulation with OML tended to reduce the storm size and strengthened the storm intensity and hence provided a better simulation of hurricane pathway and landfall.
    Description: This work was supported by the MIT Sea Grant College Program through grant 2017‐R/RCM‐49C and 2012‐R/RC‐127, the NSF grants OCE1459096, OCE1332207, and OCE1332666, the NOAA‐funded IOOS NERACOOS program for NECOFS with subcontract numbers NA16NOS0120023 and NERACOOS A002 and A007, and the NOAA‐CINAR Hurricane Sandy fund. The development of the Global‐FVCOM system has been supported by NSF grants OCE1603000. S. Li was supported partially by the oversea Ph.D. fellowship from the China Scholarship Council (No. 1409010025).
    Description: 2021-04-07
    Keywords: Mixed layer ; Numerical model ; Hurricane ; FVCOM ; WRF
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Evans, D. G., Frajka-Williams, E., Garabato, A. C. N., Polzin, K. L., & Forryan, A. Mesoscale eddy dissipation by a "zoo" of submesoscale processes at a western boundary. Journal of Geophysical Research: Oceans, 125(11), (2020): e2020JC016246, doi:10.1029/2020JC016246.
    Description: Mesoscale eddies are ubiquitous dynamical features that tend to propagate westward and disappear along ocean western boundaries. Using a multiscale observational study, we assess the extent to which eddies dissipate via a direct cascade of energy at a western boundary. We analyze data from a ship‐based microstructure and velocity survey, and an 18‐month mooring deployment, to document the dissipation of energy in anticyclonic and cyclonic eddies impinging on the topographic slope east of the Bahamas, in the North Atlantic Ocean. These observations reveal high levels of turbulence where the steep and rough topographic slope modified the intensified northward flow associated with, in particular, anticyclonic eddies. Elevated dissipation was observed both near‐bottom and at mid depths (200–800 m). Near‐bottom turbulence occurred in the lee of a protruding escarpment, where elevated Froude numbers suggest hydraulic control. Energy was also radiated in the form of upward‐propagating internal waves. Elevated dissipation at mid depths occurred in regions of strong vertical shear, where the topographic slope modified the vertical structure of the northward eddy flow. Here, low Richardson numbers and a local change in the isopycnal gradient of potential vorticity (PV) suggest that the elevated dissipation was associated with horizontal shear instability. Elevated mid‐depth dissipation was also induced by topographic steering of the flow. This led to large anticyclonic vorticity and negative PV adjacent to the topographic slope, suggesting that centrifugal instability underpinned the local enhancement in dissipation. Our results provide a mechanistic benchmark for the realistic representation of eddy dissipation in ocean models.
    Description: The MeRMEED project, DGE, EFW, ACNG and AF were funded under Natural Environment Research Council standard grant NE/N001745/2. ACNG further acknowledges the support of the Royal Society and the Wolfson Foundation.
    Keywords: Direct energy cascade ; Eddy-topography interactions ; Energy ; Instability ; Mesoscale eddies ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 21(11), (2020): e2020GC009074, doi:10.1029/2020GC009074.
    Description: Marine ferromanganese deposits, often called the scavengers of the sea, adsorb and coprecipitate with a wide range of metals of great interest for paleo‐environmental reconstructions and economic geology. The long (up to ∼75 Ma), near‐continuous record of seawater chemistry afforded by ferromanganese deposits offers much historical information about the global ocean and surface earth including crustal processes, mantle processes, ocean circulation, and biogeochemical cycles. The extent to which the ferromanganese deposits hosting these geochemical proxies undergo diagenesis on the seafloor, however, remains an important and challenging factor in assessing the fidelity of such records. In this study, we employ multiple X‐ray techniques including micro–X‐ray fluorescence, bulk and micro–X‐ray absorption spectroscopy, and X‐ray powder diffraction to probe the structural, compositional, redox, and mineral changes within a single ferromanganese crust. These techniques illuminate a complex two‐dimensional structure characterized by crust growth controlled by the availability of manganese (Mn), a dynamic range in Mn oxidation state from +3.4 to +4.0, changes in Mn mineralogy over time, and recrystallization in the lower phosphatized portions of the crust. Iron (Fe) similarly demonstrates spatial complexity with respect to concentration and mineralogy, but lacks the dynamic range of oxidation state seen for Mn. Micrometer‐scale measurements of metal abundances reveal complex element associations between trace elements and the two major oxide phases, which are not typically resolvable via bulk analytical methods. These findings provide evidence of post‐depositional processes altering chemistry and mineralogy, and provide important geochemical context for the interpretation of element and isotopic records in ferromanganese crusts.
    Description: This research is supported by NASA Exobiology NNX15AM046 to Scott D. Wankel and Colleen M. Hansel, NASA NESSF NNX15AR62H to Kevin M. Sutherland, and WHOI Ocean Exploration Institute to Colleen M. Hansel. The Stanford Synchrotron Radiation Lightsource was utilized in this study. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE‐AC02‐76SF00515.
    Description: 2021-04-26
    Keywords: Diagenesis ; Ferromanganese crust ; Manganese oxide minerals ; X‐ray absorption spectroscopy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wallace, E. J., Donnelly, J. P., van Hengstum, P. J., Winkler, T. S., McKeon, K., MacDonald, D., d'Entremont, N. E., Sullivan, R. M., Woodruff, J. D., Hawkes, A. D., & Maio, C. 1,050 years of hurricane strikes on long island in the Bahamas. Paleoceanography and Paleoclimatology, 36(3), (2021): e2020PA004156, https://doi.org/10.1029/2020PA004156.
    Description: Sedimentary records of past hurricane activity indicate centennial-scale periods over the past millennium with elevated hurricane activity. The search for the underlying mechanism behind these active hurricane periods is confounded by regional variations in their timing. Here, we present a new high resolution paleohurricane record from The Bahamas with a synthesis of published North Atlantic records over the past millennium. We reconstruct hurricane strikes over the past 1,050 years in sediment cores from a blue hole on Long Island in The Bahamas. Coarse-grained deposits in these cores date to the close passage of seven hurricanes over the historical interval. We find that the intensity and angle of approach of these historical storms plays an important role in inducing storm surge near the site. Our new record indicates four active hurricane periods on Long Island that conflict with published records on neighboring islands (Andros and Abaco Island). We demonstrate these three islands do not sample the same storms despite their proximity, and we compile these reconstructions together to create the first regional compilation of annually resolved paleohurricane records in The Bahamas. Integrating our Bahamian compilation with compiled records from the U.S. coastline indicates basin-wide increased storminess during the Medieval Warm Period. Afterward, the hurricane patterns in our Bahamian compilation match those reconstructed along the U.S. East Coast but not in the northeastern Gulf of Mexico. This disconnect may result from shifts in local environmental conditions in the North Atlantic or shifts in hurricane populations from straight-moving to recurving storms over the past millennium.
    Description: This work was funded by the National Science Foundation Graduate Research Fellowship (to E. J. W.), the Dalio Explore Foundation, and National Science Foundation grant OCE-1356708 (to J. P. D. and P. J. vH.).
    Keywords: Bahamas ; Blue holes ; Carbonates ; Paleohurricanes ; Sediment cores
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 126(3), (2021): e2021JB021709, https://doi.org/10.1029/2021JB021709.
    Description: Serpentinites are increasingly recognized as playing an important role in the global geochemical cycle. However, discriminating the contributions of serpentinites to arc magmas from those of other subduction components is challenging. The Okinawa Trough is a back-arc basin developed behind the Ryukyu subduction zone, where magmas are extensively affected by sediment subduction. In this study, we reported the F-Cl concentrations and Sr-Nd-Pb-B isotopes of basaltic andesites from the Yaeyama Graben, Yonaguni Graben, and Irabu Knoll in the southern Okinawa Trough. The Irabu Knoll lavas show the most enrichment of fluid-mobile elements and F ± Cl, and have the heaviest B isotopes (δ11B: +6.6 ± 1.5‰). They also have decoupled Sr-Nd isotopes: higher 87Sr/86Sr (∼0.7049) but have no obvious decrease of 143Nd/144Nd (∼0.5128). Results from slab dehydration modeling and mixing calculations suggest that the heavy δ11B in the Irabu Knoll lavas is not consistent with fluids derived from altered oceanic crust (AOC), sediments, or wedge serpentinites (formed in the mantle wedge), but rather from slab serpentinites (formed within the subducting plate); sediments control the subduction input of Nd, whereas the decoupled Sr-Nd isotopes are most likely due to the excess radiogenic Sr carried by AOC fluids. Our results imply that recycling of serpentinite fluids and AOC fluids are usually coupled in subduction zones, as the arc lavas influenced by subducted serpentinite generally show Sr-Nd isotopes decoupling. The large variation of Sr-Nd-B isotopes observed in a relatively localized area is consistent with a focused migration through the mantle wedge of components from multiple sources.
    Description: This study was funded by the National Natural Science Foundation of China (91958213), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB42020402), the China Postdoctoral Science Foundation (2019M662454), the Shandong Provincial Natural Science Foundation, China (ZR2020QD068 and ZR2020MD068), the International Partnership Program of the Chinese Academy of Sciences (133137KYSB20170003), the Special Fund for the Taishan Scholar Program of Shandong Province (ts201511061), and the China Scholarship Council (201709410550).
    Description: 2021-09-12
    Keywords: AOC ; Boron isotope ; Geochemical cycling ; Serpentinite ; Sr-Nd isotope decoupling ; Subduction zone
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 48(15), (2021): e2021GL094469, https://doi.org/10.1029/2021GL094469.
    Description: The magnitude of natural oceanic dissolved oxygen (DO) variability remains poorly understood due to the short duration of the observational record. Here we present a high-resolution (4–9 years) reconstruction of the Southern California oxygen minimum zone (OMZ) through the Common Era using redox-sensitive metals. Rapid OMZ intensification on multidecadal timescales reveals greater DO variability than observed in instrumental records. An anomalous interval of intensified OMZ between 1600–1750 CE contradicts the expectation of better-ventilated mid-depth North Pacific during cool climates. Although the influence of low-DO Equatorial Pacific Intermediate Water on the Southern California Margin was likely weaker during this interval, we attribute the observed rapid deoxygenation to reduced North Pacific Intermediate Water (NPIW) ventilation. NPIW ventilation thus appears very sensitive to atmospheric circulation reorganization (e.g., a weakened Siberian High and Aleutian Low). In addition to temperature-induced gas solubility, atmospheric forcing under future anthropogenic influences could amplify OMZ variability.
    Description: The authors are grateful for financial supports from NSF (OCE-1851242), SMAST, and UMass Dartmouth. GG was supported by NSF under grants OCE-1657853 and OCE-1558521.
    Description: 2022-01-16
    Keywords: Southern California ; Oxygen minimum zone ; Atmospheric circulation ; North Pacific Intermediate Water ; Ventilation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 47(22), (2020): e2020GL088692, doi:10.1029/2020GL088692.
    Description: Rapid increases in upper 700‐m Indian Ocean heat content (IOHC) since the 2000s have focused attention on its role during the recent global surface warming hiatus. Here, we use ocean model simulations to assess distinct multidecadal IOHC variations since the 1960s and explore the relative contributions from wind stress and buoyancy forcing regionally and with depth. Multidecadal wind forcing counteracted IOHC increases due to buoyancy forcing from the 1960s to the 1990s. Wind and buoyancy forcing contribute positively since the mid‐2000s, accounting for the drastic IOHC change. Distinct timing and structure of upper ocean temperature changes in the eastern and western Indian Ocean are linked to the pathway how multidecadal wind forcing associated with the Interdecadal Pacific Oscillation is transmitted and affects IOHC through local and remote winds. Progressive shoaling of the equatorial thermocline—of importance for low‐frequency variations in Indian Ocean Dipole occurrence—appears to be dominated by multidecadal variations in wind forcing.
    Description: This work was supported by the Alexander von Humboldt Foundation (CCU and SR), The Investment in Science Fund given primarily by WHOI Trustee and Corporation Members (CCU), James E. and Barbara V. Moltz Fellowship for climate‐related research (CCU), the ARC Centre of Excellence for Climate Extremes (CE170100023; CCU and MHE), ARC DP150101331 (CCU and MHE), and PW was supported through grant IndoArchipel from the Deutsche Forschungsgemeinschaft (DFG) as part of the Special Priority Program (SPP)‐1889”Regional Sea Level Change and Society” (SeaLevel).
    Description: 2021-04-26
    Keywords: Decadal variability ; Hiatus ; Indian Ocean ; Ocean heat content ; Ocean models ; Pacific Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 126(6), (2021): e2020JB021341, https://doi.org/10.1029/2020JB021341.
    Description: Constraining how the physical properties and seismic responses of recently deposited sands change with time is important for understanding earthquake site response, subsurface fluid flow, and early stages of lithification. Currently, however, there is no detailed (cm-scale) assessment of how sand's physical properties and associated seismic velocities evolve over the first two centuries after deposition. Here, we integrate sedimentation rates with seismic velocity and sediment physical properties data to assess how the vadose zone sands at Port Royal Beach, Jamaica, change within 180 years after deposition. We show that compressional and shear wave velocities increase with sediment age, whereas porosity, grain size, sorting, mineralogy, and cementation fraction remain relatively unchanged during the same period. Rock physics models (constrained by the measured physical properties) predict constant seismic velocities at all sites regardless of sediment age, though misfits between modeled and observed velocities increase with sediment age. We explain these misfits by proposing that shallow sands undergo microstructural grain reorganization that leads to a more uniform distribution of grain contact forces with time. Our results imply that beach sands undergo a previously undocumented lithification process that occurs before compaction.
    Description: The Society of Exploration Geophysicists Geoscientists without Borders Grant and the Institute for Earth, Science, and Man at Southern Methodist University partially supported this work.
    Keywords: Compaction ; Contact creep ; Geotechnical ; Rock physics ; Sand aging
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Johnson, J. E., Phillips, S. C., Clyde, W. C., Giosan, L., & Torres, M. E. Isolating detrital and diagenetic signals in magnetic susceptibility records from methane-bearing marine sediments. Geochemistry Geophysics Geosystems, 22(9), (2021): e2021GC009867, https://doi.org/10.1029/2021GC009867.
    Description: Volume-dependent magnetic susceptibility (κ) is commonly used for paleoenvironmental reconstructions in both terrestrial and marine sedimentary environments where it reflects a mixed signal between primary deposition and secondary diagenesis. In the marine environment, κ is strongly influenced by the abundance of ferrimagnetic minerals regulated by sediment transport processes. Post-depositional alteration by H2S, however, can dissolve titanomagnetite, releasing reactive Fe that promotes pyritization and subsequently decreases κ. Here, we provide a new approach for isolating the detrital signal in κ and identifying intervals of diagenetic alteration of κ driven by organoclastic sulfate reduction (OSR) and the anaerobic oxidation of methane (AOM) in methane-bearing marine sediments offshore India. Using the correlation of a heavy mineral proxy from X-ray fluorescence data (Zr/Rb) and κ in unaltered sediments, we predict the primary detrital κ signal and identify intervals of decreased κ, which correspond to increased total sulfur content. Our approach is a rapid, high-resolution method that can identify overprinted κ resulting from pyritization of titanomagnetite due to H2S production in marine sediments. In addition, total organic carbon, total sulfur, and authigenic carbonate δ13C measurements indicate that both OSR and AOM can drive the observed κ loss, but AOM drives the greatest decreases in κ. Overall, our approach can enhance paleoenvironmental reconstructions and provide insight into paleo-positions of the sulfate-methane transition zone, past enhancements of OSR or paleo-methane seepage, and the role of detrital iron oxide minerals on the marine sediment sulfur sink, with consequences influencing the development of chemosynthetic biological communities at methane seeps.
    Description: This research was supported by the American Chemical Society-Petroleum Research Fund Award #53006-ND8 and U.S. Department of Energy Grant #DE-FE0010120.
    Keywords: Magnetic susceptibility ; Pyritization ; Anaerobic oxidation of methane (AOM) ; Organoclastic sulfate reduction (OSR) ; Marine sediment diagenesis ; Methane seep chemosynthetic fauna
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Goldstein, E. B., Buscombe, D., Lazarus, E. D., Mohanty, S. D., Rafique, S. N., Anarde, K. A., Ashton, A. D., Beuzen, T., Castagno, K. A., Cohn, N., Conlin, M. P., Ellenson, A., Gillen, M., Hovenga, P. A., Over, J.-S. R., Palermo, R., Ratliff, K. M., Reeves, I. R. B., Sanborn, L. H., Straub, J. A., Taylor, L. A., Wallace E. J., Warrick, J., Wernette, P., Williams, H. E. Labeling poststorm coastal imagery for machine learning: measurement of interrater agreement. Earth and Space Science, 8(9), (2021): e2021EA001896, https://doi.org/10.1029/2021EA001896.
    Description: Classifying images using supervised machine learning (ML) relies on labeled training data—classes or text descriptions, for example, associated with each image. Data-driven models are only as good as the data used for training, and this points to the importance of high-quality labeled data for developing a ML model that has predictive skill. Labeling data is typically a time-consuming, manual process. Here, we investigate the process of labeling data, with a specific focus on coastal aerial imagery captured in the wake of hurricanes that affected the Atlantic and Gulf Coasts of the United States. The imagery data set is a rich observational record of storm impacts and coastal change, but the imagery requires labeling to render that information accessible. We created an online interface that served labelers a stream of images and a fixed set of questions. A total of 1,600 images were labeled by at least two or as many as seven coastal scientists. We used the resulting data set to investigate interrater agreement: the extent to which labelers labeled each image similarly. Interrater agreement scores, assessed with percent agreement and Krippendorff's alpha, are higher when the questions posed to labelers are relatively simple, when the labelers are provided with a user manual, and when images are smaller. Experiments in interrater agreement point toward the benefit of multiple labelers for understanding the uncertainty in labeling data for machine learning research.
    Description: The authors gratefully acknowledge support from the U.S. Geological Survey (G20AC00403 to EBG and SDM), NSF (1953412 to EBG and SDM; 1939954 to EBG), Microsoft AI for Earth (to EBG and SDM), The Leverhulme Trust (RPG-2018-282 to EDL and EBG), and an Early Career Research Fellowship from the Gulf Research Program of the National Academies of Sciences, Engineering, and Medicine (to EBG). U.S. Geological Survey researchers (DB, J-SRO, JW, and PW) were supported by the U.S. Geological Survey Coastal and Marine Hazards and Resources Program as part of the response and recovery efforts under congressional appropriations through the Additional Supplemental Appropriations for Disaster Relief Act, 2019 (Public Law 116-20; 133 Stat. 871).
    Keywords: Data labeling ; Classification ; Hurricane impacts ; Machine learning ; Imagery ; Data annotation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    facet.materialart.
    Unknown
    American Geophysical Union
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 48(8), (2021): e2021GL093127, https://doi.org/10.1029/2021GL093127.
    Description: The seismometer deployed by the InSight lander measured the seismic velocity of the Martian crust. We use a rock physics model to interpret those velocities and constrain hydrogeological properties. The seismic velocity of the upper ∼10 km is too low to be ice-saturated. Hence there is no cryosphere that confines deeper aquifers and possibly no aquifers locally. An increase in seismic velocity at depths of ∼10 km could be explained by a few volume percent of mineral cement (1%–5%) in pore space and may document the past depth of aquifers.
    Description: M. Manga was supported by NASA grant 80NSSC19K0545.
    Keywords: Cryosphere ; Marsquakes ; Rock physics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 48(18), (2021): e2021GL092621, https://doi.org/10.1029/2021GL092621.
    Description: In the subsurface ocean, O2 depleted because of organic matter remineralization is generally estimated based on apparent oxygen utilization (AOU). However, AOU is an imperfect measure of oxygen utilization because of O2 air-sea disequilibrium at the site of deepwater formation. Recent methodological and instrumental advances have paved the way to further deconvolve the processes driving the O2 signature. Using numerical model simulations of the global ocean, we show that the measurements of the dissolved O2/Ar ratio, which so far have been confined to the ocean surface, can provide improved estimates of oxygen utilization, especially in regions where the disequilibrium at the site of deepwater formation is associated with physical processes. We discuss applications of this new approach and implications for the current tracers relying on O2 such as remineralization ratios, respiratory quotients, and preformed nutrients. Finally, we propose a new composite geochemical tracer, [O2]bio combining dissolved O2/Ar and phosphate concentration. Being insensitive to photosynthesis and respiration, the change in this new tracer reflects gas exchange at the air-sea interface at the sites of deepwater formation.
    Description: Nicolas Cassar was supported by the “Laboratoire d'Excellence” LabexMER (ANR-10-LABX-19) and cofunded by a grant from the French government under the program “Investissements d'Avenir.” Samar Khatiwala was supported by UK NERC grant NE/T009357/1. Ellen Cliff acknowledges support from the Rhodes Trust.
    Description: 2022-03-13
    Keywords: AOU ; Oxygen ; O2/Ar ; Remineralization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bretschneider, L., Hathorne, E. C., Bolton, C. T., Gebregiorgis, D., Giosan, L., Gray, E., Huang, H., Holbourn, A., Kuhnt, W., & Frank, M. Enhanced late miocene chemical weathering and altered precipitation patterns in the watersheds of the Bay of Bengal recorded by detrital clay radiogenic isotopes. Paleoceanography and Paleoclimatology, 36(9), (2021): e2021PA004252, https://doi.org/10.1029/2021PA004252.
    Description: The late Miocene was a period of declining CO2 levels and extensive environmental changes, which likely had a large impact on monsoon strength as well as on the weathering and erosion intensity in the South Asian Monsoon domain. To improve our understanding of these feedback systems, detrital clays from the southern Bay of Bengal (International Ocean Discovery Program Site U1443) were analyzed for the radiogenic isotope compositions of Sr, Nd, and Pb to reconstruct changes in sediment provenance and weathering regime related to South Asian Monsoon rainfall from 9 to 5 Ma. The 100 kyr resolution late Miocene to earliest Pliocene record suggests overall low variability in the provenance of clays deposited on the Ninetyeast Ridge. However, at 7.3 Ma, Nd and Pb isotope compositions indicate a switch to an increased relative contribution from the Irrawaddy River (by ∼10%). This shift occurred during the global benthic δ13C decline, and we suggest that global cooling and increasing aridity resulted in an eastward shift of precipitation patterns leading to a more focused erosion of the Indo-Burman Ranges. Sr isotope compositions were decoupled from Nd and Pb isotope signatures and became more radiogenic between 6 and 5 Ma. Grassland expansion generating thick, easily weatherable soils may have led to an environment supporting intense chemical weathering, which is likely responsible for the elevated detrital clay 87Sr/86Sr ratios during this time. This change in Sr isotope signatures may also have contributed to the late Miocene increase of the global seawater Sr isotope composition.
    Description: This research used samples and data provided by the International Ocean Discovery Program and was funded by the German Research Foundation (DFG) (grants HA 5751/6-1 & -2). C. T. Bolton acknowledges funding from the French ANR project iMonsoon (ANR-16-CE01-0004-01) and IODP France. W. Kuhnt acknowledges funding from the DFG (grant Ku649/36-1).
    Keywords: Clay radiogenic isotopes ; Late Miocene ; South Asian Monsoon ; Chemical weathering
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 126(7), (2021): e2020JG005977, https://doi.org/10.1029/2020JG005977.
    Description: Increasing Arctic temperatures are thawing permafrost soils and liberating ancient organic matter, but the fate of this material remains unclear. Thawing of permafrost releases dissolved organic matter (DOM) into fluvial networks. Unfortunately, tracking this material in Arctic rivers such as the Kolyma River in Siberia has proven challenging due to its high biodegradability. Here, we evaluate late summer abruptly thawed yedoma permafrost dissolved organic carbon (DOC) inputs from Duvannyi Yar. We implemented ultrahigh-resolution mass spectrometry alongside ramped pyrolysis oxidation (RPO) and isotopic analyses. These approaches offer insight into DOM chemical composition and DOC radiocarbon values of thermochemical components for a permafrost thaw stream, the Kolyma River, and their biodegraded counterparts (n = 4). The highly aliphatic molecular formula found in undegraded permafrost DOM contrasted with the comparatively aliphatic-poor formula of Kolyma River DOM, represented by an 8.9% and 2.6% relative abundance, respectively, suggesting minimal inputs of undegraded permafrost DOM in the river. RPO radiocarbon fractions of Kolyma River DOC exhibited no “hidden” aged component indicative of permafrost influence. Thermostability analyses suggested that there was limited biodegraded permafrost DOC in the Kolyma River, in part determined by the formation of high-activation energy (thermally stable) biodegradation components in permafrost DOM that were lacking in the Kolyma River. A mixing model based on thermostability and radiocarbon allowed us to estimate a maximum input of between 0.8% and 7.7% of this Pleistocene-aged permafrost to the Kolyma River DOC. Ultimately, our findings highlight that export of modern terrestrial DOC currently overwhelms any permafrost DOC inputs in the Kolyma River.
    Description: This work was funded by NSF grants ANT-1203885 and PLR-1500169 to R.G.M.S. The work was also supported by the National Science Foundation Division of Chemistry through DMR-1644779 and the State of Florida.
    Description: 2022-01-09
    Keywords: Permafrost ; Dissolved organic carbon ; Dissolved organic matter ; FT-ICR MS ; Ramped pyrolysis oxidation ; Arctic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 22(4), (2021): e2020GC009481, https://doi.org/10.1029/2020GC009481.
    Description: The impact of submarine hydrothermal systems on organic carbon in the ocean—one of the largest fixed carbon reservoirs on Earth—could be profound. Yet, different vent sites show diverse fluid chemical compositions and the subsequent biological responses. Observations from various vent sites are to evaluate hydrothermal systems' impact on the ocean carbon cycle. A response cruise in May 2009 to an on-going submarine eruption at West Mata Volcano, northeast Lau Basin, provided an opportunity to quantify the organic matter production in a back-arc spreading hydrothermal system. Hydrothermal vent fluids contained elevated dissolved organic carbon, particulate organic carbon (POC), and particulate nitrogen (PN) relative to background seawater. The δ13C-POC values for suspended particles in the diffuse vent fluids (−15.5‰ and −12.3‰) are distinct from those in background seawater (−23 ± 1‰), indicative of unique carbon synthesis pathways of the vent microbes from the seawater counterparts. The first dissolved organic nitrogen concentrations reported for diffuse vents were similar to or higher than those for background seawater. Enhanced nitrogen fixation and denitrification removed 37%–89% of the total dissolved nitrogen in the recharging background seawater in the hydrothermal vent flow paths. The hydrothermal plume samples were enriched in POC and PN, indicating enhanced biological production. The total “dark” organic carbon production within the plume matches the thermodynamic prediction based on available reducing chemical substances supplied to the plume. This research combines the measured organic carbon contents with thermodynamic modeled results and demonstrates the importance of hydrothermal activities on the water column carbon production in the deep ocean.
    Description: This project was supported by N.S.F. (OCE0929881, J. P. Cowen and K. H. Rubin), the NOAA PMEL VENTS (now Earth-Ocean Interactions) Program and the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement No. NA10OAR4320148, and the UH NASA Astrobiology Institute. The Ministry of Science and Technology of Taiwan award (MOST 107-2611-M-002-002, and MOST 108-2611-M-002-006 to H.-T. Lin). Ministry of Education (M.O.E.) Republic of China (Taiwan) 109L892601 to H.-T. Lin. SOEST contributions no. 11285, C-DEBI contribution no. 563. PMEL contribution no. 3996, JISAO contribution 2183.
    Keywords: Dissolved organic carbon (DOC) ; Dissolved organic nitrogen (DON) ; Hydrothermal vent fluids and plumes ; Particulate nitrogen (PN) ; Particulate organic carbon isotopes (δ13C-POC) ; Thermodynamic prediction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Water Resources Research 57(4), (2021): e2020WR028430, https://doi.org/10.1029/2020WR028430.
    Description: We use yearlong vertical temperature profile time-series (seven thermistors at evenly spaced depth intervals from 10 to 70 cm) from five sites in and around the Deep Hole thermal area, southeast of Stevenson Island, Yellowstone Lake, to investigate heat and mass fluxes across the lake floor. The records demonstrate that thermal gradients in surficial sediments are modulated by a rich spectrum of bottom water temperature variations generated by hydrodynamic processes, and that sites inside the thermal area also respond to hydrothermal variations. We develop and implement a new method for estimating the sediment effective thermal diffusivity and pore fluid vertical flow rate that exploits the full spectrum of observed temperature variations to generate the parameter estimates, uncertainties, and metrics to assess statistical significance. Sediments at sites outside thermal areas have gradients of ∼7.5°C/m, in situ thermal diffusivities of ∼1.6 × 10−7 m2/s consistent with highly porous (80–90%) siliceous sediments, and experience hypolentic flow in the upper ∼20 cm. Sites inside the Deep Hole thermal area exhibit considerable spatial and temporal variability, with gradients of 1–32°C/m, and higher thermal diffusivities of ∼2–12 × 10−7 m2/s, consistent with hydrothermal alteration of biogenic silica to clays, quartz, and pyrite. Upward pore fluid flow at these sites is observed across multiple depth intervals, with maximum values of ∼3 cm/day. The observed spatial and temporal variability within the thermal area is consistent with upward finger flow combined with short wavelength convection within the porous sediments above a steam reservoir.
    Description: This research was supported by the National Science Foundation Grants EAR-1516361 to Robert A. Sohn and EAR-1515283 to Robert N. Harris, and by the Independent Research and Development Program at the Woods Hole Oceanographic Institution (Robert A. Sohn). All work in Yellowstone National Park was completed under an authorized Yellowstone research permit (YELL-2018-SCI-7018).
    Keywords: Groundwater ; Hydrothermal ; Hypolentic flow ; Thermal diffusivity ; Thermal gradients ; Vertical temperature profile
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(5), (2021): e2020JC017091, https://doi.org/10.1029/2020JC017091.
    Description: A region of exceptionally high macrofaunal benthic biomass exists in Barrow Canyon, implying a carbon export process that is locally concentrated. Here we offer an explanation for this benthic “hotspot” using shipboard data together with a set of dynamical equations. Repeat occupations of the Distributed Biological Observatory transect in Barrow Canyon reveal that when the northward flow is strong and the density front in the canyon is sharp, plumes of fluorescence and oxygen extend from the pycnocline to the seafloor in the vicinity of the hotspot. By solving the quasi-geostrophic omega equation with an analytical flow field fashioned after the observations, we diagnose the vertical velocity in the canyon. This reveals that, as the along stream flow converges into the canyon, it drives a secondary circulation cell with strong downwelling on the cyclonic side of the northward flow. The downwelling quickly advects material from the pycnocline to the seafloor in a vertical plume analogous to those seen in the observations. The plume occurs only when the phytoplankton reside in the pycnocline, since the near-surface vertical velocity is weak, also consistent with the observations. Using a wind-based proxy to represent the strength of the northward flow and hence the pumping, in conjunction with a satellite-derived phytoplankton source function, we construct a time series of carbon supply to the bottom of Barrow Canyon.
    Description: This work was funded by National Science Foundation grants PLR-1504333 and OPP-1733564 (Robert S. Pickart, Frank Bahr), OPP-1822334 (Michael A. Spall), PLR-1304563 (Kevin R. Arrigo), OPP-1204082 and OPP-1702456 (Jacqueline M. Grebmeier); National Oceanic and Atmospheric Administration grants NA14OAR4320158 and NA19OAR4320074 (Robert S. Pickart, Peigen Lin, Leah T. McRaven), CINAR-22309.02 (Jacqueline M. Grebmeier).
    Keywords: Barrow Canyon ; Benthic fauna ; Chukchi Sea ; Dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(5), (2021): e2020JC016922, https://doi.org/10.1029/2020JC016922.
    Description: Mesoscale eddies redistribute heat, salt, and nutrients in oceans. The South Atlantic Ocean (SA) is a basin that has active mesoscale eddies for which characteristics of the three-dimensional structure and its leading mechanism are complex but have yet been studied sufficiently. Here based on ocean reanalysis datasets we use a composite analysis approach to analyze the mixed layer anomalous heat budget and find distinct two types of spatial patterns: dipole and monopole – mainly present in the northern and southern regions of the SA, respectively. The dipole can be attributed to ocean horizontal advection, especially to the combined effect of eddy anomalous meridional current and meridional gradient of mean temperature. The monopole, on the other hand, is associated with complex contributions, for which zonal and meridional advections play opposite roles as cooling or heating around the eddies. At the eddy center, the vertical advection is non-negligible, especially the mean upwelling and vertical temperature gradient playing a vital role in the formation of a monopole. The analysis of eddy meridional heat transport shows that the stirring component is dominant, and poleward in most areas, especially at high latitudes. Such analysis on the leading mechanism of eddy-induced temperature anomaly could help improve our understanding on meso- and small-scale air-sea interactions and eddy-induced heat transport in the SA.
    Description: This work is supported by the National Key R&D Program of China (2017YFC1404100 and 2017YFC1404104) and the National Natural Science Foundation of China (Grant No. 41775100, 41830964) as well as Shandong Province’s “Taishan” Scientist Program and Qingdao “Creative and Initiative” frontier Scientist Program. This research is also supported by the Center for High Performance Computing and System Simulation, Pilot National Laboratory for Marine Science and Technology (Qingdao).
    Keywords: Composite three-dimensional structure ; Eddy heat transport ; Mesoscale eddies ; Mixed layer heat budget ; South Atlantic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 48(15), (2021): e2021GL093675, https://doi.org/10.1029/2021GL093675.
    Description: Tide gauges provide a rich, long-term, record of the amplitude and spatiotemporal structure of interannual to multidecadal coastal sea-level variability, including that related to North American east coast sea level “hotspots.” Here, using wavelet analyses, we find evidence for multidecadal epochs of enhanced decadal (10–15 year period) sea-level variability at almost all long ( 70 years) east coast tide gauge records. Within this frequency band, large-scale spatial covariance is time-dependent; notably, coastal sectors north and south of Cape Hatteras exhibit multidecadal epochs of coherence ( 1960–1990) and incoherence ( 1990-present). Results suggest that previous interpretations of along coast covariance, and its underlying physical drivers, are clouded by time-dependence and frequency-dependence. Although further work is required to clarify the mechanisms driving sea-level variability in this frequency band, we highlight potential associations with the North Atlantic sea surface temperature tripole and Atlantic Multidecadal Variability.
    Description: Christopher M. Little acknowledges funding support from NSF Grant OCE-1805029. CGP and RMP were funded through NASA Sea Level Change Team (CGP: Grant 80NSSC20K1241).
    Description: 2022-01-15
    Keywords: Tide gauge ; Decadal ; Sea level ; Coastal flood ; Cape Hatteras ; East coast
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 126(4), (2021): e2020JB019395, https://doi.org/10.1029/2020JB019395.
    Description: Improved understanding of the impact of crystal mush rheology on the response of magma chambers to magmatic events is critical for better understanding crustal igneous systems with abundant crystals. In this study, we extend an earlier model by Liao et al. (2018); https://doi.org/10.1029/2018jb015985 which considers the mechanical response of a magma chamber with poroelastic crystal mush, by including poroviscoelastic rheology of crystal mush. We find that the coexistence of the two mechanisms of poroelastic diffusion and viscoelastic relaxation causes the magma chamber to react to a magma injection event with more complex time-dependent behaviors. Specifically, we find that the system’s short-term evolution is dominated by the poroelastic diffusion process, while its long-term evolution is dominated by the viscoelastic relaxation process. We identify two post-injection timescales that represent these two stages and examine their relation to the material properties of the system. We find that better constraints on the poroelastic diffusion time are more important for the potential interpretation of surface deformation using the model.
    Keywords: Crystal mush ; Ground deformation ; Magma chamber ; Volcanic unrest
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2022-10-21
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Warner, J. C., Geyer, W. R., Ralston, D. K., & Kalra, T. Using tracer variance decay to quantify variability of salinity mixing in the Hudson River Estuary. Journal of Geophysical Research: Oceans, 125(12), (2020): e2020JC016096, https://doi.org/10.1029/2020JC016096.
    Description: The salinity structure in an estuary is controlled by time‐dependent mixing processes. However, the locations and temporal variability of where significant mixing occurs is not well‐understood. Here we utilize a tracer variance approach to demonstrate the spatial and temporal structure of salinity mixing in the Hudson River Estuary. We run a 4‐month hydrodynamic simulation of the tides, currents, and salinity that captures the spring‐neap tidal variability as well as wind‐driven and freshwater flow events. On a spring‐neap time scale, salinity variance dissipation (mixing) occurs predominantly during the transition from neap to spring tides. On a tidal time scale, 60% of the salinity variance dissipation occurs during ebb tides and 40% during flood tides. Spatially, mixing during ebbs occurs primarily where lateral bottom salinity fronts intersect the bed at the transition from the main channel to adjacent shoals. During ebbs, these lateral fronts form seaward of constrictions located at multiple locations along the estuary. During floods, mixing is generated by a shear layer elevated in the water column at the top of the mixed bottom boundary layer, where variations in the along channel density gradients locally enhance the baroclinic pressure gradient leading to stronger vertical shear and more mixing. For both ebb and flood, the mixing occurs at the location of overlap of strong vertical stratification and eddy diffusivity, not at the maximum of either of those quantities. This understanding lends a new insight to the spatial and time dependence of the estuarine salinity structure.
    Description: This study was funded through the Coastal Model Applications and Field Measurements Project and the Cross‐shore and Inlets Project, US Geological Survey Coastal Marine Hazards and Resources Program. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.
    Keywords: Hudson River Estuary ; Mixing ; Numerical modeling ; Tracer variance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2022-10-21
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Colson, B. C., & Michel, A. P. M. Flow-through quantification of microplastics using impedance spectroscopy. ACS Sensors, 6(1), (2021): 238–244, doi:10.1021/acssensors.0c02223.
    Description: Understanding the sources, impacts, and fate of microplastics in the environment is critical for assessing the potential risks of these anthropogenic particles. However, our ability to quantify and identify microplastics in aquatic ecosystems is limited by the lack of rapid techniques that do not require visual sorting or preprocessing. Here, we demonstrate the use of impedance spectroscopy for high-throughput flow-through microplastic quantification, with the goal of rapid measurement of microplastic concentration and size. Impedance spectroscopy characterizes the electrical properties of individual particles directly in the flow of water, allowing for simultaneous sizing and material identification. To demonstrate the technique, spike and recovery experiments were conducted in tap water with 212–1000 μm polyethylene beads in six size ranges and a variety of similarly sized biological materials. Microplastics were reliably detected, sized, and differentiated from biological materials via their electrical properties at an average flow rate of 103 ± 8 mL/min. The recovery rate was ≥90% for microplastics in the 300–1000 μm size range, and the false positive rate for the misidentification of the biological material as plastic was 1%. Impedance spectroscopy allowed for the identification of microplastics directly in water without visual sorting or filtration, demonstrating its use for flow-through sensing.
    Description: The authors thank the Richard Saltonstall Charitable Foundation and the National Academies Keck Futures Initiative (NAKFI DBS13) for their funding support.
    Keywords: Microplastics ; Plastics ; Impedance spectroscopy ; Dielectric properties ; Instrumentation ; Particle detection ; Flow-through ; Environmental sensing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2022-12-16
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(4), (2021): e2020JC016757, https://doi.org/10.1029/2020JC016757.
    Description: The along-shelf circulation in the Northwest Atlantic (NWA) Ocean is characterized by an equatorward flow from Greenland's south coast to Cape Hatters. The mean flow is considered to be primarily forced by freshwater discharges from rivers and glaciers while its variability is driven by both freshwater fluxes and wind stress. In this study, we hypothesize and test that the wind stress is important for the mean along-shelf flow. A two-layer model with realistic topography when forced by wind stress alone simulates a circulation system on the NWA shelves that is broadly consistent with that derived from observations, including an equatorward flow from Greenland coast to the Mid-Atlantic Bight (MAB). The along-shelf sea-level gradient is close to a previous estimate based on observations. The along-shelf flows exhibit strong seasonal variations with along-shelf transports being strong in fall/winter and weak in spring/summer, consistent with available observations. It is found that the NWA shelf circulation is affected by both wind-driven gyres through their western boundary currents and wind-stress forcing on the shelf especially along the coasts of Newfoundland and Labrador. The local wind stress forcing has more direct impacts on flows in shallower waters along the coast while the open-ocean gyres tend to affect the circulations along the outer shelf. Our conclusion is that wind stress is an important forcing of the main along-shelf flows in the NWA. One objective of this study is to motivate further examination of whether wind stress is as important as freshwater forcing for the mean flow.
    Description: Both Yang and Chen are also supported by NOAA Climate Program Office's Climate Variability and Prediction Program under grant NA20OAR4310398. JY is supported by Woods Hole Oceanographic Institution (WHOI) W. V. A. Clark Chair for Excellence in Oceanography and NSF Ocean Science Division under grant OCE1634886. Chen is supported by WHOI Independent Research and Development award.
    Description: 2021-09-30
    Keywords: Cross-shelf interactions ; Northwest Atlantic Ocean ; Numerical models ; Ocean dynamics ; Shelf flows ; Wind stress forcing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2023-02-17
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 35(3), (2021): e2020GB006764, https://doi.org/10.1029/2020GB006764
    Description: Export of Particulate Organic Carbon (POC) is mainly driven by gravitational sinking. Thus, traditionally, it is thought that larger, faster-sinking particles make up most of the POC export flux. However, this need not be the case for particles whose sinking speeds are comparable to the vertical velocities of a dynamic flow field that can influence the descent rate of particles. Particles with different settling speeds are released in two process-oriented model simulations of an upper ocean eddying flow in the Northeast Pacific to evaluate the impact of (1) ocean dynamics on the respective contribution of the different sinking-velocity classes to POC export, and (2) the particle number size-spectrum slope. The analysis reveals that the leading export mechanism changes from gravitationally driven to advectively driven as submesoscale dynamics become more active in the region. The vertical velocity associated with submesoscale dynamics enhances the contribution of slower-sinking particles to POC export flux by a factor ranging from 3 to 10, especially where the relative abundance of small particles is large (i.e., steep particle size-spectrum slope). Remineralization generally decreases the total amount of biomass exported, but its impact is weaker in dynamical regimes where submesoscale dynamics are present and export is advectively driven. In an advectively driven export regime, remineralization processes counter-intuitively enhance the role of slower-sinking particles to the point where these slower-sinking velocity classes dominate the export, therefore challenging the traditional paradigm for POC export. This study demonstrates that slow-sinking particles can be a significant contribution, and at times, even dominate the export flux.
    Description: The work was funded by NASA grant NNX16AR48 G, to complement the EXport Processes in the global Ocean from RemoTe Sensing (EXPORTS) program.
    Description: 2021-08-17
    Keywords: Export ; Flux ; Particulate organic carbon ; Sinking rates ; Submeso-scales ; Vertical velocities
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Donatelli, C., Kalra, T. S., Fagherazzi, S., Zhang, X., & Leonardi, N. Dynamics of marsh-derived sediments in lagoon-type estuaries. Journal of Geophysical Research: Earth Surface, 125(12), (2020): e2020JF005751, doi:10.1029/2020JF005751.
    Description: Salt marshes are valuable ecosystems that must trap sediments and accrete in order to counteract the deleterious effect of sea level rise. Previous studies have shown that the capacity of marshes to build up vertically depends on both autogenous and exogenous processes including ecogeomorphic feedbacks and sediment supply from in‐land and coastal ocean. There have been numerous efforts to quantify the role played by the sediments coming from marsh edge erosion on the resistance of salt marshes to sea level rise. However, the majority of existing studies investigating the interplay between lateral and vertical dynamics use simplified modeling approaches, and they do not consider that marsh retreat can affect the regional‐scale hydrodynamics and sediment retention in back‐barrier basins. In this study, we evaluated the fate of the sediments originating from marsh lateral loss by using high‐resolution numerical model simulations of Jamaica Bay, a small lagoonal estuary located in New York City. Our findings show that up to 42% of the sediment released during marsh edge erosion deposits on the shallow areas of the basin and over the vegetated marsh platforms, contributing positively to the sediment budget of the remaining salt marshes. Furthermore, we demonstrate that with the present‐day sediment supply from the ocean, the system cannot keep pace with sea level rise even accounting for the sediment liberated in the bay through marsh degradation. Our study highlights the relevance of multiple sediment sources for the maintenance of the marsh complex.
    Description: This study was supported by the Department of the Interior Hurricane Sandy Recovery program (ID G16AC00455, subaward to University of Liverpool). S. F. was partly supported by NSF awards 1637630 (PIE LTER) and 1832221 (VCR LTER). We thank Robert Chant from Rutgers University for sharing the hydrodynamic measurements in Jamaica Bay.
    Keywords: Marsh erosion ; Sediment recycling ; Sea level rise ; Jamaica Bay
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2022-10-27
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 126(5), (2021): e2020JG006217, https://doi.org/10.1029/2020JG006217.
    Description: It is assumed that to treat excess NO3− high soil organic matter content (%OM) is required to maintain high denitrification rates in natural or restored wetlands. However, this excess also represents a risk by increasing soil decomposition rates triggering peat collapse and wetland fragmentation. Here, we evaluated the role of %OM and temperature interactions controlling denitrification rates in eroding (Barataria Bay-BLC) and emerging (Wax Lake Delta-WLD) deltaic regions in coastal Louisiana using the isotope pairing (IPT) and N2:Ar techniques. We also assessed differences between total (direct denitrification + coupled nitrification-denitrification) and net (total denitrification minus nitrogen fixation) denitrification rates in benthic and wetland habitats with contrasting %OM and bulk density (BD). Sediment (benthic) and soil (wetland) cores were collected during summer, spring, and winter (2015–2016) and incubated at close to in-situ temperatures (30°C, 20°C, and 10°C, respectively). Denitrification rates were linearly correlated with temperature; maximum mean rates ranged from 40.1–124.1 μmol m−2 h−1 in the summer with lower rates (〈26.2 ± 5.3 μmol m−2 h−1) in the winter seasons. Direct denitrification was higher than coupled denitrification in all seasons. Denitrification rates were higher in WLD despite lower %OM, lower total N concentration, and higher BD in wetland soils. Therefore, in environments with low carbon availability, high denitrification rates can be sustained as long as NO3− concentrations are high (〉30 μM) and water temperature is 〉10°C. In coastal Louisiana, substrates under these regimes are represented by emergent supra-tidal flats or land created by sediment diversions under oligohaline conditions (〈1 ppt).
    Description: This study was supported by the NOAA-Sea Grant Program-Louisiana (Grant 2013R/E-24) to Victor H. Rivera-Monroy and Kanchan Maiti. Victor H. Rivera-Monroy was also supported by the Department of the Interior South-Central Climate Adaptation Science Center (Cooperative Agreement #G12AC00002).
    Keywords: Coastal Louisiana ; Deltaic system ; Denitrification ; Nitrate loading ; Organic matter ; Seasonal change ; Sediment and freshwater diversions
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(12),(2020): e2020JC016271, https://doi.org/10.1029/2020JC016271.
    Description: Asian summer monsoon has a planetary‐scale, westward propagating “quasi‐biweekly” mode of variability with a 10–25 day period. Six years of moored observations at 18°N, 89.5°E in the north Bay of Bengal (BoB) reveal distinct quasi‐biweekly variability in sea surface salinity (SSS) during summer and autumn, with peak‐to‐peak amplitude of 3–8 psu. This large‐amplitude SSS variability is not due to variations of surface freshwater flux or river runoff. We show from the moored data, satellite SSS, and reanalyses that surface winds associated with the quasi‐biweekly monsoon mode and embedded weather‐scale systems, drive SSS and coastal sea level variability in 2015 summer monsoon. When winds are calm, geostrophic currents associated with mesoscale ocean eddies transport Ganga‐Brahmaputra‐Meghna river water southward to the mooring, salinity falls, and the ocean mixed layer shallows to 1–10 m. During active (cloudy, windy) spells of quasi‐biweekly monsoon mode, directly wind‐forced surface currents carry river water away to the east and north, leading to increased salinity at the moorings, and rise of sea level by 0.1–0.5 m along the eastern and northern boundary of the bay. During July–August 2015, a shallow pool of low‐salinity river water lies in the northeastern bay. The amplitude of a 20‐day oscillation of sea surface temperature (SST) is two times larger within the fresh pool than in the saltier ocean to the west, although surface heat flux is nearly identical in the two regions. This is direct evidence that spatial‐temporal variations of BoB salinity influences sub‐seasonal SST variations, and possibly SST‐mediated monsoon air‐sea interaction.
    Description: The authors thank the Ministry of Earth Sciences (MoES) institutes NIOT and INCOIS, and the Upper Ocean Processes (UOP) group at WHOI for design, integration, and deployment of moorings in the BoB. The WHOI mooring was deployed from the ORV Sagar Nidhi and recovered from the ORV Sagar Kanya—we thank the officers, crew and science teams on the cruises for their support. Sengupta, Ravichandran and Sukhatme acknowledge MoES and the National Monsoon Mission, Indian Institute of Tropical Meteorology (IITM), Pune, for support; Lucas and Farrar acknowledge the US Office of Naval Research for support of ASIRI through grants N00014‐13‐1‐0489, N0001413‐100453, N0001417‐12880. We thank S. Shivaprasad, Dipanjan Chaudhuri and Jared Buckley for discussion on ocean currents and Ekman flow, and Fabien Durand for discussion on sea level. JSL would like to thank the Divecha Center for Climate Change, IISc., for support. DS acknowledges support from the Department of Science and Technology (DST), New Delhi, under the Indo‐Spanish Programme.
    Description: 2021-05-16
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2022-10-27
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 126(1), (2021): e2019JG005621, https://doi.org/10.1029/2019JG005621.
    Description: Ongoing ocean warming can release methane (CH4) currently stored in ocean sediments as free gas and gas hydrates. Once dissolved in ocean waters, this CH4 can be oxidized to carbon dioxide (CO2). While it has been hypothesized that the CO2 produced from aerobic CH4 oxidation could enhance ocean acidification, a previous study conducted in Hudson Canyon shows that CH4 oxidation has a small short‐term influence on ocean pH and dissolved inorganic radiocarbon. Here we expand upon that investigation to assess the impact of widespread CH4 seepage on CO2 chemistry and possible accumulation of this carbon injection along 234 km of the U.S. Mid‐Atlantic Bight. Consistent with the estimates from Hudson Canyon, we demonstrate that a small fraction of ancient CH4‐derived carbon is being assimilated into the dissolved inorganic radiocarbon (mean fraction of 0.5 ± 0.4%). The areas with the highest fractions of ancient carbon coincide with elevated CH4 concentration and active gas seepage. This suggests that aerobic CH4 oxidation has a greater influence on the dissolved inorganic pool in areas where CH4 concentrations are locally elevated, instead of displaying a cumulative effect downcurrent from widespread groupings of CH4 seeps. A first‐order approximation of the input rate of ancient‐derived dissolved inorganic carbon (DIC) into the waters overlying the northern U.S. Mid‐Atlantic Bight further suggests that oxidation of ancient CH4‐derived carbon is not negligible on the global scale and could contribute to deepwater acidification over longer time scales.
    Description: This study was sponsored by U.S. Department of Energy (DE‐FE0028980, awarded to J. D. K; DE‐FE0026195 interagency agreement with C. D. R.). We thank the crew of the R/V Hugh R. Sharp for their support, G. Hatcher, J. Borden, and M. Martini of the USGS for assistance with the LADCP, and Zach Bunnell, Lillian Henderson, and Allison Laubach for additional support at sea.
    Description: 2021-06-23
    Keywords: Radiocarbon ; Methane ; DIC ; Ocean acidification ; Climate change ; U.S Mid-Atlantic Bight
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2022-10-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fu, X., Waite, W. F., & Ruppel, C. D. Hydrate formation on marine seep bubbles and the implications for water column methane dissolution. Journal of Geophysical Research: Oceans, 126(9), (2021): e2021JC017363, https://doi.org/10.1029/2021JC017363.
    Description: Methane released from seafloor seeps contributes to a number of benthic, water column, and atmospheric processes. At seafloor seeps within the methane hydrate stability zone, crystalline gas hydrate shells can form on methane bubbles while the bubbles are still in contact with the seafloor or as the bubbles begin ascending through the water column. These shells reduce methane dissolution rates, allowing hydrate-coated bubbles to deliver methane to shallower depths in the water column than hydrate-free bubbles. Here, we analyze seafloor videos from six deepwater seep sites associated with a diverse range of bubble-release processes involving hydrate formation. Bubbles that grow rapidly are often hydrate-free when released from the seafloor. As bubble growth slows and seafloor residence time increases, a hydrate coating can form on the bubble's gas-water interface, fully coating most bubbles within ∼10 s of the onset of hydrate formation at the seafloor. This finding agrees with water-column observations that most bubbles become hydrate-coated after their initial ∼150 cm of rise, which takes about 10 s. Whether a bubble is coated or not at the seafloor affects how much methane a bubble contains and how quickly that methane dissolves during the bubble's rise through the water column. A simplified model shows that, after rising 150 cm above the seafloor, a bubble that grew a hydrate shell before releasing from the seafloor will have ∼5% more methane than a bubble of initial equal volume that did not grow a hydrate shell after it traveled to the same height.
    Description: X. Fu acknowledges support from the Miller Fellowship during her time at U.C. Berkeley. W. Waite and C. Ruppel are supported by the United States Geological Survey (USGS) Coastal/Marine Hazards and Resources Program and the Energy Resources Program, with research conducted under USGS-Department of Energy interagency agreements DE-FE0023495 and 89243320SFE000013.
    Keywords: Gas and hydrate systems ; Oceanography: biological and chemical ; Carbon cycling ; Biogeochemical cycles, processes, and modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 47(22), (2020): e2020GL090431, doi:10.1029/2020GL090431.
    Description: Vast quantities of solid CO2 reside in topographic basins of the south polar layered deposits (SPLD) on Mars and exhibit morphological features indicative of glacial flow. Previous experimental studies showed that CO2 ice is 1–2 orders of magnitude weaker than water ice under Martian polar conditions. Here we present data from deformation experiments on pure, fine‐grained CO2 ice, over a broader range of temperatures than previously explored (158–213 K). The experiments confirm previous observations of highly nonlinear power law creep at larger stresses, but also show a transition to a previously unseen linear‐viscous creep regime at lower stresses. We examine the viscosity of CO2 within the SPLD and predict that the CO2‐rich deposits are modestly stronger than previously thought. Nevertheless, CO2 ice flows much more readily than H2O ice, particularly on the steep flanks of SPLD topographic basins, allowing the CO2 to pond as observed.
    Description: This work was funded by NASA grant NNH16ZDA001N‐SSW awarded to Smith and Goldsby. Additional salary support for Cross was provided by the WHOI Investment in Science Fund.
    Description: 2021-04-29
    Keywords: SPLD ; Mars ; Glacier ; Carbon dioxide ; Flow law ; Creep
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 35(4), (2021): e2020GB006887, https://doi.org/10.1029/2020GB006887.
    Description: In this study we report full-depth water column profiles for nitrogen and oxygen isotopic composition (δ15N and δ18O) of nitrate (NO3−) during the GEOTRACES GA01 cruise (2014). This transect intersects the double gyre system of the subtropical and subpolar regions of the North Atlantic separated by a strong transition zone, the North Atlantic Current. The distribution of NO3− δ15N and δ18O shows that assimilation by phytoplankton is the main process controlling the NO3− isotopic composition in the upper 150 m, with values increasing in a NO3− δ18O versus δ15N space along a line with a slope of one toward the surface. In the subpolar gyre, a single relationship between the degree of NO3− consumption and residual NO3− δ15N supports the view that NO3− is supplied via Ekman upwelling and deep winter convection, and progressively consumed during the Ekman transport of surface water southward. The co-occurrence of partial NO3− assimilation and nitrification in the deep mixed layer of the subpolar gyre elevates subsurface NO3− δ18O in comparison to deep oceanic values. This signal propagates through isopycnal exchanges to greater depths at lower latitudes. With recirculation in the subtropical gyre, cycles of quantitative consumption-nitrification progressively decrease subsurface NO3− δ18O toward the δ18O of regenerated NO3−. The low NO3− δ15N observed south of the Subarctic Front is mostly explained by N2 fixation, although a contribution from the Mediterranean outflow is required to explain the lower NO3− δ15N signal observed between 600 and 1500 m depth close to the Iberian margin.
    Description: The GEOVIDE project was co-funded by the French national program LEFE/INSU (GEOVIDE), ANR Blanc (GEOVIDE) and RPDOC, LabEX MER and IFREMER. F. Deman was supported by the Belgian Federal Science Policy Office (Belspo contract BL/12/C63) while writing the manuscript. This work was financed by Flanders Research Foundation (FWO contract G0715.12N) and Vrije Universiteit Brussel, R&D, Strategic Research Plan “Tracers of Past & Present Global Changes”. During the preparation of the manuscript, Debany Fonseca-Batista was supported by funding from the Canada First Research Excellence Fund, through an International Postdoctoral Fellowship of the Ocean Frontier Institute (OFI) at Dalhousie University.
    Description: 2021-10-02
    Keywords: Atlantic ; Isotopy ; Nitrate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Tectonics 39(11), (2020): e2020TC006409, doi:10.1029/2020TC006409.
    Description: The dynamics of continental breakup at convergent margins has been described as the results of backarc opening caused by slab rollback or drag force induced by subduction direction reversal. Although the rollback hypothesis has been intensively studied, our understanding of the consequence of subduction direction reversal remains limited. Using thermo‐mechanical modeling based on constraints from the South China Sea (SCS) region, we investigate how subduction direction reversal controls the breakup of convergent margins. The numerical results show that two distinct breakup modes, namely, continental interior and edge breakup (“edge” refers to continent above the plate boundary interface), may develop depending on the “maturity” of the convergent margin and the age of the oceanic lithosphere. For a slab age of ~15 to ~45 Ma, increasing the duration of subduction promotes the continental interior breakup mode, where a large block of the continental material is separated from the overriding plate. In contrast, the continental edge breakup mode develops when the subduction is a short‐duration event, and in this mode, a wide zone of less continuous continental fragments and tearing of the subducted slab occur. These two modes are consistent with the interior (relic late Mesozoic arc) and edge (relic forearc) rifting characteristics in the western and eastern SCS margin, suggesting that variation in the northwest‐directed subduction duration of the Proto‐SCS might be a reason for the differential breakup locus along the strike of the SCS margin. Besides, a two‐segment trench associated with the northwest‐directed subduction is implied in the present‐day SCS region.
    Description: This research was supported by the Guangdong NSF research team project (2017A030312002), the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0205), the K. C. Wong Education Foundation (GJTD‐2018‐13), the Strategic Priority Research Program of the Chinese Academy of Science (XDA13010303), the Chinese Academy of Sciences (Y4SL021001, QYZDY‐SSWDQC005, 133244KYSB20180029, and ISEE2019ZR01), the NSFC project (41606073, 41890813, and 41576070), the IODP‐China Foundation, the OMG Visiting Fellowship (OMG18‐15), and the Hong Kong Research Grant Council Grants (Nos. 14313816 and 14304820).
    Description: 2021-04-06
    Keywords: Continental breakup ; Convergent margins ; Edge breakup ; Subduction direction reversal ; Proto‐South China Sea ; Numerical modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Walsh, A. N., Reddy, C. M., Niles, S. F., McKenna, A. M., Hansel, C. M., & Ward, C. P. Plastic formulation is an emerging control of its photochemical fate in the ocean. Environmental Science & Technology, 55(18), (2021): 12383–12392, https://doi.org/10.1021/acs.est.1c02272.
    Description: Sunlight exposure is a control of long-term plastic fate in the environment that converts plastic into oxygenated products spanning the polymer, dissolved, and gas phases. However, our understanding of how plastic formulation influences the amount and composition of these photoproducts remains incomplete. Here, we characterized the initial formulations and resulting dissolved photoproducts of four single-use consumer polyethylene (PE) bags from major retailers and one pure PE film. Consumer PE bags contained 15–36% inorganic additives, primarily calcium carbonate (13–34%) and titanium dioxide (TiO2; 1–2%). Sunlight exposure consistently increased production of dissolved organic carbon (DOC) relative to leaching in the dark (3- to 80-fold). All consumer PE bags produced more DOC during sunlight exposure than the pure PE (1.2- to 2.0-fold). The DOC leached after sunlight exposure increasingly reflected the 13C and 14C isotopic composition of the plastic. Ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry revealed that sunlight exposure substantially increased the number of DOC formulas detected (1.1- to 50-fold). TiO2-containing bags photochemically degraded into the most compositionally similar DOC, with 68–94% of photoproduced formulas in common with at least one other TiO2-containing bag. Conversely, only 28% of photoproduced formulas from the pure PE were detected in photoproduced DOC from the consumer PE. Overall, these findings suggest that plastic formulation, especially TiO2, plays a determining role in the amount and composition of DOC generated by sunlight. Consequently, studies on pure, unweathered polymers may not accurately represent the fates and impacts of the plastics entering the ocean.
    Description: Funding was provided by the Seaver Institute, the Gerstner Family Foundation, Woods Hole Oceanographic Institution, and the National Science Foundation Graduate Research Fellowship Program (A.N.W.). The Ion Cyclotron Resonance user facility at the National High Magnetic Field Laboratory is supported by the National Science Foundation Division of Chemistry and Division of Materials Research through DMR-1644779 and the State of Florida.
    Keywords: Plastic pollution ; Marine debris ; Additives ; Dissolved organic carbon ; Photochemical oxidation ; FT-ICR-MS ; Titanium dioxide
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 125(12),(2020): e2020JB020040, https://doi.org/10.1029/2020JB020040.
    Description: We model the magnetic signature of rift‐related volcanism to understand the distribution and volume of magmatic activity that occurred during the breakup of Pangaea and early Atlantic opening at the Eastern North American Margin (ENAM). Along‐strike variations in the amplitude and character of the prominent East Coast Magnetic Anomaly (ECMA) suggest that the emplacement of the volcanic layers producing this anomaly similarly varied along the margin. We use three‐dimensional magnetic forward modeling constrained by seismic interpretations to identify along‐margin variations in volcanic thickness and width that can explain the observed amplitude and character of the ECMA. Our model results suggest that the ECMA is produced by a combination of both first‐order (~600–1,000 km) and second‐order (~50–100 km) magmatic segmentation. The first‐order magmatic segmentation could have resulted from preexisting variations in crustal thickness and rheology developed during the tectonic amalgamation of Pangaea. The second‐order magmatic segmentation developed during continental breakup and likely influenced the segmentation and transform fault spacing of the initial, and modern, Mid‐Atlantic Ridge. These variations in magmatism show how extension and thermal weakening was distributed at the ENAM during continental breakup and how this breakup magmatism was related to both previous and subsequent Wilson cycle stages.
    Description: Thanks to Anne Bécel, Dan Lizarralde, Collin Brandl, Brandon Shuck, and Mark Everett for beneficial discussion and assistance in compiling the archived data used in this study. We thank Debbie Hutchinson (USGS Woods Hole Coastal and Marine Science Center) for passing along her vast breadth of knowledge on the ENAM through numerous constructive suggestions to greatly strengthen our manuscript. We greatly appreciate the insightful comments from two reviewers, the Associate Editor, and the Editor that significantly improved the manuscript. Thanks to Maurice Tivey for providing codes that aided our magnetic modeling efforts. Project completed as part of J.A.G.'s Ph.D. dissertation at Texas A&M University.
    Description: 2021-05-16
    Keywords: ENAM ; Rifted margin ; Breakup magmatism ; Magnetic modeling ; Continental breakup ; Atlantic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(12), (2020): e2020JC016543, https://doi.org/10.1029/2020JC016543.
    Description: On coral reefs, flow determines residence time of water influencing physical and chemical environments and creating observable microclimates within the reef structure. Understanding the physical mechanisms driving environmental variability on shallow reefs, which distinguishes them from the open ocean, is important for understanding what contributes to thermal resilience of coral communities and predicting their response to future anomalies. In June 2014, a field experiment conducted at Dongsha Atoll in the northern South China Sea investigated the physical forces that drive flow over a broad shallow reef flat. Instrumentation included current and pressure sensors and a distributed temperature sensing system, which resolved spatially and temporally continuous temperature measurements over a 3‐km cross‐reef section from the lagoon to reef crest. Spectral analysis shows that while diurnal variability was significant across the reef flat—a result expected from daily solar heating—temperature also varied at higher frequencies near the reef crest. These spatially variable temperature regimes, or thermal microclimates, are influenced by circulation on the wide reef flat, with spatially and temporally variable contributions from tides, wind, and waves. Through particle tracking simulations, we find the residence time of water is shorter near the reef crest (3.6 h) than near the lagoon (8.6 h). Tidal variability in flow direction on the reef flat leads to patterns in residence time that are different than what would be predicted from unidirectional flow. Circulation on the reef also determines the source (originating from offshore vs. the lagoon) of the water present on the reef flat.
    Description: We thank S. Tyler, and J. Selker from the Center for Transformative Environmental Monitoring Programs (CTEMPs), funded by the National Science Foundation (EAR awards 1440596 and 1440506), for timely and effective provision of experimental design support, logistical support and equipment for the project. Support for S. Lentz is from NSF Grant No. OCE‐1558343. Support for A. Cohen from NSF Grant No. 1220529, by the Academia Sinica (Taiwan) through a thematic project grant to G. Wong and A. Cohen. Support for E. Reid and K. Davis is from National Science Foundation (NSF) Grant No. OCE‐1753317, and support to E. Reid from the Environmental Engineering Henry Samueli Endowed Fellowship and the UCI Oceans Graduate Fellowship.
    Description: 2021-05-23
    Keywords: Coral reef ; Distributed temperature sensing ; Temperature variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology 35(12), (2020): e2020PA003853, https://doi.org/10.1029/2020PA003853.
    Description: During the middle Miocene, Earth's climate changed from a global warm period (Miocene Climatic Optimum) into a colder one with the expansion of the Antarctic ice sheet. This prominent climate transition was also a period of drastic changes in global atmospheric circulation. The development of the South Asian monsoon is not well understood and mainly derived from proxy records of wind strength. Data for middle Miocene changes in rainfall are virtually non‐existent for India and the Arabian Sea prior to 11 Ma. This study presents planktic foraminiferal trace element (Mg/Ca and Ba/Ca) and stable oxygen isotope records from NGHP‐01 Site 01A off the coast of West India in the Eastern Arabian Sea (EAS) to reconstruct the regional surface hydrography and hydroclimate in the South Asian monsoon (SAM) region during the middle Miocene. The Ba/Ca and local seawater δ18O (δ18Osw) changes reveal a notable gradual increase in SAM rainfall intensity during the middle Miocene. Additionally to this long‐term increase in precipitation, the seawater δ18O is punctuated by a prominent decrease, i.e. freshening, at ~14 Ma contemporary with Antarctic glaciation. This suggests that Southern Ocean Intermediate Waters (SOIW) transmitted Antarctic salinity changes into the Arabian Sea via an “oceanic tunnel” mechanism. The middle Miocene increase in SAM rainfall is consistent with climate model simulations of an overall strengthening Asian monsoon from the Eocene to the middle/late Miocene with a further acceleration after the middle Miocene climate transition.
    Description: This study has been funded by the National Natural Science Foundation of China through a grant to S. Steinke (NSFC grant No. 41776055) and Z. Jian and S. Steinke (NSFC grant No. 919582080). We express our gratitude to H. Kuhnert (MARUM, University of Bremen) and his team for stable isotope analyses. We thank P. Qiao (Tongji University Shanghai) for technical and analytical support with the ICP‐MS analyses, A. Dolman (Alfred‐Wegener‐Institute, Helmholtz Centre for Polar and Marine Research, Potsdam, Germany) for statistical analyses, and B. Wang (State Key Laboratory of Marine Environmental Science, Xiamen University) and his team for the SEM‐EDAX Energy Dispersive X‐ray Spectroscopy (EDS) analyses. L. Giosan acknowledges funding from USSP and WHOI and thanks colleagues and crew from the NGHP‐01 expedition for intellectual interactions leading to long‐standing interests in the fluvial‐continental margin systems of Peninsular India. J. Groeneveld thanks the State Key Laboratory of Marine Environmental Science (Xiamen University) for a MEL Senior Visiting Fellowship (Project No. MELRS1915).
    Description: 2021-05-27
    Keywords: Middle Miocene ; South Asian monsoon ; Arabian Sea ; Stable isotopes ; Trace elements
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 21(12), (2020): e2020GC008914, https://doi.org/10.1029/2020GC008914.
    Description: Rarely have small seamounts on the flanks of hotspot derived ocean‐island volcanoes been the targets of sampling, due to sparse high‐resolution mapping near ocean islands. In the Galápagos Archipelago, for instance, sampling has primarily targeted the subaerial volcanic edifices, with only a few studies focusing on large‐volume submarine features. Sampling restricted to these large volcanic features may present a selection bias, potentially resulting in a skewed view of magmatic and source processes because mature magmatic systems support mixing and volcanic accretion that overprints early magmatic stages. We demonstrate how finer‐scale sampling of satellite seamounts surrounding the volcanic islands in the Galápagos can be used to lessen this bias and thus, better constrain the evolution of these volcanoes. Seamounts were targeted in the vicinity of Floreana and Fernandina Islands, and between Santiago and Santa Cruz. In all regions, individual seamounts are typically monogenetic, but each seamount field requires multigenerational magmatic episodes to account for their geochemical variability. This study demonstrates that in the southern and eastern regions the seamounts are characterized by greater geochemical variability than the islands they surround but all three regions have (Sr‐Nd‐He) isotopic signatures that resemble neighboring islands. Variations in seamount chemistry from alkalic to tholeiitic near Fernandina support the concept that islands along the center of the hotspot track undergo greater mean depths of melting, as predicted by plume theory. Patterns of geochemical and isotopic enrichment of seamounts within each region support fine‐scale mantle heterogeneities in the mantle plume sourcing the Galápagos hotspot.
    Description: This work was carried out with funding from National Science Foundation Division of Ocean Sciences (OCE‐1634952 to V. D. Wanless, OCE‐1634685 to S. A. Soule). The authors have no competing interests to declare. We thank Sally Gibson and three anonymous reviewers for providing detailed and critical feedback on this manuscript.
    Description: 2021-05-06
    Keywords: Basalt ; Hotspot ; Mantle ; Ocean island ; Radiogenic isotope ; Trace element
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 126(1),(2021): e2020JB020982, https://doi.org/10.1029/2020JB020982.
    Description: Seismic anisotropy measurements show that upper mantle hydration at the Middle America Trench (MAT) is limited to serpentinization and/or water in fault zones, rather than distributed uniformly. Subduction of hydrated oceanic lithosphere recycles water back into the deep mantle, drives arc volcanism, and affects seismicity at subduction zones. Constraining the extent of upper mantle hydration is an important part of understanding many fundamental processes on Earth. Substantially reduced seismic velocities in tomography suggest that outer rise plate‐bending faults provide a pathway for seawater to rehydrate the slab mantle just prior to subduction. Estimates of outer‐rise hydration based on tomograms vary significantly, with some large enough to imply that, globally, subduction has consumed more than two oceans worth of water during the Phanerozoic. We found that, while the mean upper mantle wavespeed is reduced at the MAT outer rise, the amplitude and orientation of inherited anisotropy are preserved at depths 〉1 km below the Moho. At shallower depths, relict anisotropy is replaced by slowing in the fault‐normal direction. These observations are incompatible with pervasive hydration but consistent with models of wave propagation through serpentinized fault zones that thin to 〈100‐m in width at depths 〉1 km below Moho. Confining hydration to fault zones reduces water storage estimates for the MAT upper mantle from ∼3.5 wt% to 〈0.9 wt% H20. Since the intermediate thermal structure in the ∼24 Myr‐old MAT slab favors serpentinization, limited hydration suggests that fault mechanics are the limiting factor, not temperatures. Subducting mantle may be similarly dry globally.
    Description: National Science Foundation. Grant Numbers: OCE-0625178, OCE-0841063
    Description: 2021-06-15
    Keywords: Outer‐rise hydration ; Upper mantle anisotropy ; Upper mantle hydration
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(10),(2020): e2020JC016507, https://doi.org/10.1029/2020JC016507.
    Description: Survival of Gulf Stream (GS) warm core rings (WCRs) was investigated using a census consisting of a total of 961 rings formed during the period 1980–2017. Kaplan‐Meier survival probability and Cox hazard proportional models were used for the analysis. The survival analysis was performed for rings formed in four 5° zones between 75° W and 55° W. The radius, latitude, and distance from the shelf‐break of a WCR at formation all had a significant effect on the survival of WCRs. A pattern of higher survival was observed in WCRs formed in Zone 2 (70°–65° W) or Zone 3 (65°–60° W) and then demised in Zone 1 (75°–70° W). Survival probability of the WCRs increased to more than 70% for those formed within a latitude band from 39.5° to 41.5° N. Survival probability is reduced when the WCRs are formed near the New England Seamounts.
    Description: We are grateful for financial supports from NOAA (NA11NOS0120038), NSF (OCE‐1851242), SMAST, and UMass Dartmouth. G. G. was supported by NSF under grant OCE‐1851261.
    Description: 2021-04-14
    Keywords: Gulf Stream ; Warm core rings ; Survival analysis
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Anderson, M., Wanless, V. D., Perfit, M., Conrad, E., Gregg, P., Fornari, D., & Ridley, W. I. Extreme heterogeneity in mid-ocean ridge mantle revealed in lavas from the 8 degrees 20 ' N near-axis seamount chain. Geochemistry Geophysics Geosystems, 22(1), (2021): e2020GC009322, https://doi.org/10.1029/2020GC009322.
    Description: Lavas that have erupted at near‐axis seamounts provide windows into mid‐ocean ridge mantle heterogeneity and melting systematics which are not easily observed on‐axis at fast‐spreading centers. Beneath ridges, most heterogeneity is obscured as magmas aggregate toward the ridge, where they efficiently mix and homogenize during transit and within shallow magma chambers prior to eruption. To understand the deeper magmatic processes contributing to oceanic crustal formation, we examine the compositions of lavas erupted along a chain of near‐axis seamounts and volcanic ridges perpendicular to the East Pacific Rise. We assess the chemistry of near‐ridge mantle using a ∼200 km‐long chain at ∼8°20′N. High‐resolution bathymetric maps are used with geochemical analyses of ∼300 basalts to evaluate the petrogenesis of lavas and the heterogeneity of mantle feeding these near‐axis eruptions. Major and trace element concentrations and radiogenic isotope ratios are highly variable on 〈1 km scales, and reveal a continuum of depleted, normal, and enriched basalts spanning the full range of ridge and seamount compositions in the northeast Pacific. There is no systematic compositional variability along the chain. Modeling suggests that depleted mid‐ocean ridge basalt (DMORB) lavas are produced by ∼5%–15% melting of a depleted mid‐ocean ridge (MOR) mantle. Normal mid‐ocean ridge basalts (NMORB) form from 5% to 15% melting of a slightly enriched MOR mantle. Enriched mid‐ocean ridge basalts (EMORB) range from 〈1% melting of 10% enriched mantle to 〉15% melting of 100% enriched mantle. The presence of all three lava types along the seamount chain, and on a single seamount closest to the ridge axis, confirms that the sub‐ridge mantle is much more heterogeneous than is commonly observed on‐axis and heterogeneity exists over small spatial scales.
    Description: This work was supported by NSF OCE‐MGG 1356610 (Romano and Gregg), NSF OCE‐MGG 1356822 (Fornari), NSF OCE‐MGG 1357150 (Perfit), NSF OCE‐MGG 2001314 (Perfit and Wanless), the Burnham Research Grant at Boise State University, and the Graduate School Funding Fellowship at University of Florida.
    Keywords: East Pacific Rise ; Mantle heterogeneity ; Mantle melting ; Mid‐ocean ridge basalt ; Near‐axis seamounts ; Seamount volcanism
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sutherland, K. M., Grabb, K. C., Karolewski, J. S., Plummer, S., Farfan, G. A., Wankel, S. D., Diaz, J. M., Lamborg, C. H., & Hansel, C. M. Spatial heterogeneity in particle-associated, light-independent superoxide production within productive coastal waters. Journal of Geophysical Research: Oceans, 125(10), (2020): e2020JC016747, https://doi.org/10.1029/2020JC016747.
    Description: In the marine environment, the reactive oxygen species (ROS) superoxide is produced through a diverse array of light‐dependent and light‐independent reactions, the latter of which is thought to be primarily controlled by microorganisms. Marine superoxide production influences organic matter remineralization, metal redox cycling, and dissolved oxygen concentrations, yet the relative contributions of different sources to total superoxide production remain poorly constrained. Here we investigate the production, steady‐state concentration, and particle‐associated nature of light‐independent superoxide in productive waters off the northeast coast of North America. We find exceptionally high levels of light‐independent superoxide in the marine water column, with concentrations ranging from 10 pM to in excess of 2,000 pM. The highest superoxide concentrations were particle associated in surface seawater and in aphotic seawater collected meters off the seafloor. Filtration of seawater overlying the continental shelf lowered the light‐independent, steady‐state superoxide concentration by an average of 84%. We identify eukaryotic phytoplankton as the dominant particle‐associated source of superoxide to these coastal waters. We contrast these measurements with those collected at an off‐shelf station, where superoxide concentrations did not exceed 100 pM, and particles account for an average of 40% of the steady‐state superoxide concentration. This study demonstrates the primary role of particles in the production of superoxide in seawater overlying the continental shelf and highlights the importance of light‐independent, dissolved‐phase reactions in marine ROS production.
    Description: This work was funded by grants from the Chemical Oceanography program of the National Science Foundation (OCE‐1355720 to C. M. H. and C. H. L.), NASA Earth and Space Science Fellowship (Grant NNX15AR62H to K. M. S.), Agouron Institute Postdoctoral Fellowship (K. M. S.), NSF GRFPs (2016230268 to K. C. G. and 2017250547 to S. P.), and a Sloan Research Fellowship (J. M. D.). The Guava flow cytometer was purchased through an NSF equipment improvement grant (1624593).
    Keywords: reactive oxygen species ; Extracellular superoxide ; Light‐independent ROS
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2022-10-19
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology 36(7), (2021): e2020PA004088, https://doi.org/10.1029/2020PA004088.
    Description: We reconstruct deep water-mass salinities and spatial distributions in the western North Atlantic during the Last Glacial Maximum (LGM, 19–26 ka), a period when atmospheric CO2 was significantly lower than it is today. A reversal in the LGM Atlantic meridional bottom water salinity gradient has been hypothesized for several LGM water-mass reconstructions. Such a reversal has the potential to influence climate, ocean circulation, and atmospheric CO2 by increasing the thermal energy and carbon storage capacity of the deep ocean. To test this hypothesis, we reconstructed LGM bottom water salinity based on sedimentary porewater chloride profiles in a north-south transect of piston cores collected from the deep western North Atlantic. LGM bottom water salinity in the deep western North Atlantic determined by the density-based method is 3.41–3.99 ± 0.15% higher than modern values at these sites. This increase is consistent with: (a) the 3.6% global average salinity change expected from eustatic sea level rise, (b) a northward expansion of southern sourced deep water, (c) shoaling of northern sourced deep water, and (d) a reversal of the Atlantic's north-south deep water salinity gradient during the LGM.
    Description: This work was supported by the US National Science Foundation (grant numbers 1433150 and 1537485).
    Description: 2021-10-24
    Keywords: Carbon cycle ; Climate change ; Deep water ; Glaciation ; Meridional overturning circulation ; Paleosalinity ; Porewater
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2022-10-19
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology 36(9), (2021): e2021PA004226, https://doi.org/10.1029/2021PA004226.
    Description: The deep ocean has long been recognized as the reservoir that stores the carbon dioxide (CO2) removed from the atmosphere during Pleistocene glacial periods. The removal of glacial atmospheric CO2 into the ocean is likely modulated by an increase in the degree of utilization of macronutrients at the sea surface and enhanced storage of respired CO2 in the deep ocean, known as enhanced efficiency of the biological pump. Enhanced biological pump efficiency during glacial periods is most easily documented in the deep ocean using proxies for oxygen concentrations, which are directly linked to respiratory CO2 levels. We document the enhanced storage of respired CO2 during the Last Glacial Maximum (LGM) in the Pacific Southern Ocean and deepest Equatorial Pacific using records of deglacial authigenic manganese, which form as relict peaks during increases in bottom water oxygen (BWO) concentration. These peaks are found at depths and regions where other oxygenation histories have been ambiguous, due to diagenetic alteration of authigenic uranium, another proxy for BWO. Our results require that the entirety of the abyssal Pacific below approximately 1,000 m was enriched in respired CO2 and depleted in oxygen during the LGM. The presence of authigenic Mn enrichment in the deep Equatorial Pacific for each of the last five deglaciations suggests that the storage of respired CO2 in the deep ocean is a ubiquitous feature of late-Pleistocene ice ages.
    Description: This work was performed with support from the National Science Foundation (NSF) over about 30 years. The TT013 and NBP9802 cores were collected during the U.S. JGOFS program. Their collection and analyses were supported by NSF OCE-9022301 and OPP-95303398 to R. F. Anderson, and NSF OCE 9301097 to R. W. Murray. Coring and radiocarbon analyses on NBP1702 were funded by NSF OPP-1542962. XRF analysis on NBP9802 and NBP1702 cores, as well as additional radiocarbon measurements, was funded by an LDEO Climate Center Grant to F. J. Pavia.
    Description: 2022-02-17
    Keywords: Manganese ; Southern Ocean ; Pacific Ocean ; Respired carbon ; Bottom water oxygen ; Deglaciations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(2), (2021): e2020JC016773, https://doi.org/10.1029/2020JC016773.
    Description: A new modeling methodology for ripple dynamics driven by oscillatory flows using a Eulerian two‐phase flow approach is presented in order to bridge the research gap between near‐bed sediment transport via ripple migration and suspended load transport dictated by ripple induced vortices. Reynolds‐averaged Eulerian two‐phase equations for fluid phase and sediment phase are solved in a two‐dimensional vertical domain with a k‐ε closure for flow turbulence and particle stresses closures for short‐lived collision and enduring contact. The model can resolve full profiles of sediment transport without making conventional near‐bed load and suspended load assumptions. The model is validated with an oscillating tunnel experiment of orbital ripple driven by a Stokes second‐order (onshore velocity skewed) oscillatory flow with a good agreement in the flow velocity and sediment concentration. Although the suspended sediment concentration far from the ripple in the dilute region was underpredicted by the present model, the model predicts an onshore ripple migration rate that is in very good agreement with the measured value. Another orbital ripple case driven by symmetric sinusoidal oscillatory flow is also conducted to contrast the effect of velocity skewness. The model is able to capture a net offshore‐directed suspended load transport flux due to the asymmetric primary vortex consistent with laboratory observation. More importantly, the model can resolve the asymmetry of onshore‐directed near‐bed sediment flux associated with more intense boundary layer flow speed‐up during onshore flow cycle and sediment avalanching near the lee ripple flank which force the onshore ripple migration.
    Description: This study is supported by National Science Foundation (Grant no. OCE‐1635151) and Strategic Environmental Research and Development Program (Grant no. MR20‐1478).
    Description: 2021-06-29
    Keywords: Orbital ripples ; Ripple migration ; Sediment transport ; Two‐phase model
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(2), (2021): e2020JC016856, https://doi.org/10.1029/2020JC016856.
    Description: The genus Phaeocystis is distributed globally and has considerable ecological, biogeochemical, and societal impacts. Understanding its distribution, growth and ecological impacts has been limited by lack of extensive observations on appropriate scales. In 2018, we investigated the biological dynamics of the New England continental shelf and encountered a substantial bloom of Phaeocystis pouchetii. Based on satellite imagery during January through April, the bloom extended over broad expanses of the shelf; furthermore, our observations demonstrated that it reached high biomass levels, with maximum chlorophyll concentrations exceeding 16 µg L−1 and particulate organic carbon levels 〉 95 µmol L−1. Initially, the bloom was largely confined to waters with temperatures 〈6°C, which in turn were mostly restricted to shallow areas near the coast. As the bloom progressed, it appeared to sink into the bottom boundary layer; however, enough light and nutrients were available for growth. The bloom was highly productive (net community production integrated through the mixed layer from stations within the bloom averaged 1.16 g C m−2 d−1) and reduced nutrient concentrations considerably. Long‐term coastal observations suggest that Phaeocystis blooms occur sporadically in spring on Nantucket Shoals and presumably expand onto the continental shelf. Based on the distribution of Phaeocystis during our study, we suggest that it can have a significant impact on the overall productivity and ecology of the New England shelf during the winter/spring transition.
    Description: This project was supported by the US National Science Foundation (Grants 1657855, 1657803, and 1657489). NES‐LTER contributions were supported by grants to HMS from NSF (Grant 1655686) and the Simons Foundation (Grant 561126). VPR operations were supported by the Dalio Explore Fund.
    Description: 2021-07-15
    Keywords: Biomass ; New England ; Nutrients ; Phaeocystis ; Phytoplankton ; Productivity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Water Resources Research 57(7), (2021): e2020WR028727, https://doi.org/10.1029/2020WR028727.
    Description: Numerous wetlands in the prairies of Canada provide important ecosystem services, yet are threatened by climate and land-use changes. Understanding the impacts of climate change on prairie wetlands is critical to effective conservation planning. In this study, we construct a wetland model with surface water balance and ecoregions to project future distribution of wetlands. The climatic conditions downscaled from the Weather Research and Forecasting model were used to drive the Noah-MP land surface model to obtain surface water balance. The climate change perturbation is derived from an ensemble of general circulation models using the pseudo global warming method, under the RCP8.5 emission scenario by the end of 21st century. The results show that climate change impacts on wetland extent are spatiotemporally heterogenous. Future wetter climate in the western Prairies will favor increased wetland abundance in both spring and summer. In the eastern Prairies, particularly in the mixed grassland and mid-boreal upland, wetland areas will increase in spring but experience enhanced declines in summer due to strong evapotranspiration. When these effects of climate change are considered in light of historical drainage, they suggest a need for diverse conservation and restoration strategies. For the mixed grassland in the western Canadian Prairies, wetland restoration will be favorable, while the highly drained eastern Prairies will be challenged by the intensified hydrological cycle. The outcomes of this study will be useful to conservation agencies to ensure that current investments will continue to provide good conservation returns in the future.
    Description: Z. Zhang was funded by a Mitacs Accelerate Fellowship funded by Ducks Unlimited Canada's Institute for Wetland and Waterfowl Research. Z. Zhang, Z. Li, and Y. Li acknowledge the financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant, and Global Water Futures Program, Canada First Research Excellence Fund. This project was supported by grants from Wildlife Habitat Canada, Bass Pro Shops Cabela’s Outdoor Fund, and the Alberta NAWMP Partnership.
    Description: 2021-12-21
    Keywords: Wetland ; Hydrology ; Climate change ; Prairie Pothole Region ; Waterfowl ; Conservation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 48(11), (2021): e2021GL093178, https://doi.org/10.1029/2021GL093178.
    Description: The effects of heterogeneous reactions between river-borne particles and the carbonate system were studied in the plumes of the Mississippi and Brazos rivers. Measurements within these plumes revealed significant removal of dissolved inorganic carbon (DIC) and total alkalinity (TA). After accounting for all known DIC and TA sinks and sources, heterogeneous reactions (i.e., heterogeneous CaCO3 precipitation and cation exchange between adsorbed and dissolved ions) were found to be responsible for a significant fraction of DIC and TA removal, exceeding 10% and 90%, respectively, in the Mississippi and Brazos plume waters. This finding was corroborated by laboratory experiments, in which the seeding of seawater with the riverine particles induced the removal of the DIC and TA. The combined results demonstrate that heterogeneous reactions may represent an important controlling mechanism of the seawater carbonate system in particle-rich coastal areas and may significantly impact the coastal carbon cycle.
    Description: This research was funded by the National Science Foundation (NSF) and the Bi-National Science Foundation U.S-Israel award number OCE-BSF 1635388.
    Description: 2021-11-20
    Keywords: Calcium carbonate ; Carbon cycle ; Carbonate chemistry ; Heterogeneous reactions ; Mississippi ; River mouths
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 48(19), (2021): e2021GL094364, https://doi.org/10.1029/2021GL094364.
    Description: The warm Gulf Stream sea surface temperatures strongly impact the evolution of winter clouds behind atmospheric cold fronts. Such cloud evolution remains challenging to model. The Gulf Stream is too wide within the ERA5 and MERRA2 reanalyses, affecting the turbulent surface fluxes. Known problems within the ERA5 boundary layer (too-dry and too-cool with too strong westerlies), ascertained primarily from ACTIVATE 2020 campaign aircraft dropsondes and secondarily from older buoy measurements, reinforce surface flux biases. In contrast, MERRA2 winter surface winds and air-sea temperature/humidity differences are slightly too weak, producing surface fluxes that are too low. Reanalyses boundary layer heights in the strongly forced winter cold-air-outbreak regime are realistic, whereas late-summer quiescent stable boundary layers are too shallow. Nevertheless, the reanalysis biases are small, and reanalyses adequately support their use for initializing higher-resolution cloud process modeling studies of cold-air outbreaks.
    Description: This work was supported by NASA grant 80NSSC19K0390 to ACTIVATE, a NASA Earth Venture Suborbital-3 (EVS-3) investigation funded by NASA's Earth Science Division and managed through the Earth System Science Pathfinder Program Office. The Pacific Northwest National Laboratory (PNNL) is operated for the US Department of Energy (DOE) by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830.
    Description: 2022-03-08
    Keywords: Cold-air outbreaks ; Surface fluxes ; Gulf Stream ; ACTIVATE ; ERA5 ; MERRA2
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2022-10-20
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Loranger, S., & Weber, T. C. . Shipboard acoustic observations of flow rate from a seafloor-sourced oil spill. Journal of Geophysical Research: Oceans, 125(10), (2020): e2020JC016274, https://doi.org/10.1029/2020JC016274.
    Description: In 2004 a debris flow generated by Hurricane Ivan toppled an oil production platform in Mississippi Canyon lease block 20 (MC20). Between 2004 and the installation of a containment system in 2019 MC20 became an in situ laboratory for a wide range of hydrocarbon in the sea‐related research, including different methods of assessing the volumetric flow rate of hydrocarbons spanning different temporal scales. In 2017 a shipboard acoustic Doppler current profiler (ADCP) and high‐frequency (90 to 154 kHz) broadband echosounder were deployed to assess the flow rate of liquid and gas phase hydrocarbons. Measurements of horizontal currents were combined with acoustic mapping to determine the rise velocity of the seep as it moved downstream. Models of the rise velocity for fluid particles were used to predict the size of oil droplets and gas bubbles in the seep. The amplitude and shape of the broadband acoustic backscatter were then used to differentiate between, and determine the flow rate of, hydrocarbons. Oil flow rate in the seep was estimated to be 56 to 86 barrels/day (mean urn:x-wiley:jgrc:media:jgrc24228:jgrc24228-math-0001 barrels/day) while the flow rate of gaseous hydrocarbons was estimated to be 98 to 359 m3/day (mean urn:x-wiley:jgrc:media:jgrc24228:jgrc24228-math-0002 m3/day).
    Description: The work was supported by the National Oceanic and Atmospheric Administration (Grant NA15NOS4000200).
    Keywords: Oil spill ; Acoustics ; Flow rate ; MC20
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(1), (2021): e2020JC016771, https://doi.org/10.1029/2020JC016771.
    Description: Estuaries worldwide have experienced modifications including channel deepening and intertidal reclamation over several centuries, resulting in altered fine sediment routing. Estuaries respond differently based on preexisting geometries, freshwater and sediment supplies, and extents and types of modification. The Coos Bay Estuary in Oregon is a relatively small estuary with complex geometry that has been extensively modified since 1865. A sediment transport model calibrated to modern conditions is used to assess the corresponding changes in sediment dynamics. Over ∼150 years, channel deepening (from ∼6.7 to 11 m), a 12% increase in area, and a 21% increase in volume have led to greater tidal amplitudes, salinity intrusion, and estuarine exchange flow. These changes have reduced current magnitudes, reduced bed stresses, and increased stratification, especially during rainy periods. Historically, fluvially derived sediment was dispersed across broad, deltaic‐style flats and through small tidal channels. Now, river water and sediments are diverted into a dredged navigation channel where an estuarine turbidity maximum (ETM) forms, with modeled concentrations 〉50 mg/L and measured concentrations 〉100 mg/L during discharge events. This “new” ETM supplies sediment to proximal embayments in the middle estuary and the shallow flats. Overall, sediment trapping during winter (and high river discharges) has increased more than two‐fold, owing to increased accommodation space, altered pathways of supply, and altered bed stresses and tidal asymmetries. In contrast to funnel‐shaped estuaries with simpler geometries and river‐channel transitions, these results highlight the importance of channel routing together with dredging in enhancing sediment retention and shifting pathways of sediment delivery.
    Description: The Science Collaborative is funded by the National Oceanic and Atmospheric Administration and managed by the University of Michigan Water Center (NAI4NOS4190145).
    Description: 2021-06-14
    Keywords: Dredging ; Estuarine turbidity maximum ; Estuary ; Modification ; Sediment
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2022-10-20
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geyer, W. R., Ralston, D. K., & Chen, J. Mechanisms of exchange flow in an estuary with a narrow, deep channel and wide, shallow shoals. Journal of Geophysical Research: Oceans, 125(12), (2020): e2020JC016092, https://doi.org/10.1029/2020JC016092.
    Description: Delaware Bay is a large estuary with a deep, relatively narrow channel and wide, shallow banks, providing a clear example of a “channel‐shoal” estuary. This numerical modeling study addresses the exchange flow in this channel‐shoal estuary, specifically to examine how the lateral geometry affects the strength and mechanisms of exchange flow. We find that the exchange flow is exclusively confined to the channel region during spring tides, when stratification is weak, and it broadens laterally over the shoals during the more stratified neap tides but still occupies a small fraction of the total width of the estuary. Exchange flow is relatively weak during spring tides, resulting from oscillatory shear dispersion in the channel augmented by weak Eulerian exchange flow. During neap tides, stratification and shear increase markedly, resulting in a strong Eulerian residual shear flow driven mainly by the along‐estuary density gradient, with a net exchange flow roughly 5 times that of the spring tide. During both spring and neap tides, lateral salinity gradients generated by differential advection at the edge of the channel drive a tidally oscillating cross‐channel flow, which strongly influences the stratification, along‐estuary salt balance, and momentum balance. The lateral flow also causes the phase variation in salinity that results in oscillatory shear dispersion and is an advective momentum source contributing to the residual circulation. Whereas the shoals make a negligible direct contribution to the exchange flow, they have an indirect influence due to the salinity gradients between the channel and the shoal.
    Description: The ideas in this paper were influenced by discussions with Robert Chant. Funding was provided by National Science Foundation grants OCE‐1325136, OCE‐1634490, and OCE‐1736539.
    Description: 2021-04-29
    Keywords: Estuarine circulation ; Tidal dispersion ; Lateral circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 48(3), (2021): e2020GL091200, doi:10.1029/2020GL091200.
    Description: Tabular calving events occur from Antarctica's large ice shelves only every few decades, and are preceded by rift propagation. We used high-resolution imagery and ICESat-2 data to determine the propagation rates for the three active rifts on Amery Ice Shelf (AIS; T1, T2, and E3) and observe the calving of D-28 on September 25, 2019 along T1. AIS front advance accelerated downstream of T1 in the years before calving, possibly increasing stress at the rift tip. T1 experienced significant acceleration for 12 days before calving, coinciding with a jump in propagation of E3. ICESat-2's high resolution and repeat acquisitions every 91 days allowed for analysis of the ice front before and after calving, and rift detection where it was not visible in imagery as a ∼1 m surface depression, suggesting that it propagates as a basal fracture. Our results show that ICESat-2 can provide process-scale information about iceberg calving.
    Description: We received funding from the following sources: NASA NNX15AC80G and NSF grant 1443677 (Fricker and Becker) and NASA 80NSSC20K0960 (Walker). We are grateful to Mike Cloutier, Polar Geospatial Center for assistance with WorldView imagery. Geospatial support was provided by Polar Geospatial Center under NSF-OPP awards 1043681 and 1559691.
    Description: 2021-07-12
    Keywords: Ice shelves ; Iceberg calving ; ICESat-2 ; Landsat ; Rift propagation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(7), (2021): e2020JC016899, https://doi.org/10.1029/2020JC016899.
    Description: Circulation in the nearshore region, which is critical for material transport along the coast and between the surf zone and the inner shelf, includes strong vortical motions. The horizontal length scales and vertical structure associated with vortical motions are not well documented on alongshore-variable beaches. Here, a three-dimensional phase-resolving numerical model, Simulating WAves till SHore (SWASH), is compared with surfzone waves and flows on a barred beach, and is used to investigate surfzone eddies. Model simulations with measured bathymetry reproduce trends in the mean surfzone circulation patterns, including alongshore currents and rip current circulation cells observed for offshore wave heights from 0.5 to 2.0 m and incident wave directions from 0 to 15° relative to shore normal. The length scales of simulated eddies, quantified using the alongshore wavenumber spectra of vertical vorticity, suggest that increasing wave directional spread intensifies small-scale eddies ( (10) m). Simulations with bathymetric variability ranging from alongshore uniform to highly alongshore variable indicate that large-scale eddies ( (100) m) may be enhanced by surfzone bathymetric variability, whereas small-scale eddies ( (10) m) are less dependent on bathymetric variability. The simulated vertical dependence of the magnitude and mean length scale (centroid) of the alongshore wavenumber spectra of vertical vorticity and very low-frequency (f ≈ 0.005 Hz) currents is weak in the outer surf zone, and decreases toward the shoreline. The vertical dependence in the simulations may be affected by the vertical structure of turbulence, mean shear, and bottom boundary layer dynamics.
    Description: Support was provided by the University of Washington Royalty Research Fund, the National Science Foundation, the Office of Naval Research, a National Defense Science and Engineering Graduate Fellowship, a Vannevar Bush Faculty Fellowship, the United States Army Corps of Engineers, the United States Coastal Research Program, Sea Grant, and the WHOI Investment in Science Program.
    Description: 2021-12-26
    Keywords: Surf zone ; Eddies ; Circulation ; Vorticity ; Wave breaking ; Modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...