ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Carbon sequestration
  • Springer  (6)
  • American Association for the Advancement of Science  (1)
Collection
Publisher
Years
  • 1
    ISSN: 1432-1009
    Keywords: Greenhouse gas mitigation ; Forest sector ; Russia ; Carbon sequestration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Greenhouse gas (GHG) mitigation options in the Russian forest sector include: afforestation and reforestation of unforested/degraded land area; enhanced forest productivity; incorporation of nondestructive methods of wood harvesting in the forest industry; establishment of land protective forest stands; increase in stand age of final harvest in the European part of Russia; increased fire control; increased disease and pest control; and preservation of old growth forests in the Russian Far-East, which are presently threatened. Considering the implementation of all of the options presented, the GHG mitigation potential within the forest and agroforestry sectors of Russia is approximately 0.6–0.7 Pg C/yr or one half of the industrial carbon emissions of the United States. The difference between the GHG mitigation potential and the actual level of GHGs mitigated in the Russian forest sector will depend to a great degree on external financing that may be available. One possibility for external financing is through joint implementation (JI). However, under the JI process, each project will be evaluated by considering a number of criteria including also the difference between the carbon emissions or sequestration for the baseline (or reference) and the project case, the permanence of the project, and leakage. Consequently, a project level assessment must appreciate the near-term constraints that will face practitioners who attempt to realize the GHG mitigation potential in the forest and agroforestry sectors of their countries.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 105 (1996), S. 43-52 
    ISSN: 1432-1939
    Keywords: Alps ; Biomass ; Carbon sequestration ; Carex ; Climate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Alpine plant species have been shown to exhibit a more pronounced increase in leaf photosynthesis under elevated CO2 than lowland plants. In order to test whether this higher carbon fixation efficiency will translate into increased biomass production under CO2 enrichment we exposed plots of narrow alpine grassland (Swiss Central Alps, 2470 m) to ambient (355 μl l-1) and elevated (680 μl l-1) CO2 concentration using open top chambers. Part of the plost received moderate mineral nutrient additions (40 kg ha-1 year-1 of nitrogen in a complete fertilizer mix). Under natural nutrient supply CO2 enrichment had no effect on biomass production per unit land area during any of the three seasons studied so far. Correspondingly, the dominant species Carex curvula and Leontodon helveticus as well as Trifolium alpinum did not show a growth response either at the population level or at the shoot level. However, the subdominant generalistic species Poa alpina strongly increased shoot growth (+47%). Annual root production (in ingrowth cores) was significantly enhanced in C. curvula in the 2nd and 3rd year of investigation (+43%) but was not altered in the bulk samples for all species. Fertilizer addition generally stimulated above-ground (+48%) and below-ground (+26%) biomass production right from the beginning. Annual variations in weather conditions during summer also strongly influenced above-ground biomass production (19–27% more biomass in warm seasons compared to cool seasons). However, neither nutrient availability nor climate had a significant effect on the CO2 response of the plants. Our results do not support the hypothesis that alpine plants, due to their higher carbon uptake efficiency, will increase biomass production under future atmospheric CO2 enrichment, at least not in such late successional communities. However, as indicated by the response of P. alpina, species-specific responses occur which may lead to altered community structure and perhaps ecosystem functioning in the long-term. Our findings further suggest that possible climatic changes are likely to have a greater impact on plant growth in alpine environments than the direct stimulation of photosynthesis by CO2. Counter-intuitively, our results suggest that even under moderate climate warming or enhanced atmospheric nitrogen deposition positive biomass responses to CO2 enrichment of the currently dominating species are unlikely.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Environmental management 20 (1996), S. 913-918 
    ISSN: 1432-1009
    Keywords: Joint implementation ; Activities implemented jointly ; Carbon sequestration ; Carbon dioxide ; Global climate change ; Greenhouse gas ; Belize
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract One of the most pressing environmental issues today is the possibility that projected increases in global emissions of greenhouse gases from increased deforestation, development, and fossil-fuel combustion could significantly alter global climate patterns. Under the terms of the United Nations Framework Convention on Climate Change, signed in Rio de Janeiro during the June 1992 Earth Summit, the United States and other industrialized countries committed to balancing greenhouse gas emissions at 1990 levels in the year 2000. Included in the treaty is a provision titled “Joint Implementation,” whereby industrialized countries assist developing countries in jointly modifying long-term emission trends, either through emission reductions or by protecting and enhancing greenhouse gas sinks (carbon sequestration). The US Climate Action Plan, signed by President Clinton in 1993, calls for voluntary climate change mitigation measures by various sectors, and the action plan included a new program, the US Initiative on Joint Implementation. Wisconsin Electric decided to invest in a Jl project because its concept encourages creative, cost-effective solutions to environmental problems through partnering, international cooperation, and innovation. The project chosen, a forest preservation and management effort in Belize, will sequester more than five million tons of carbon dioxide over a 40-year period, will become economically selfsustaining after ten years, and will have substantial biodiversity benefits.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 27 (1998), S. 230-235 
    ISSN: 1432-0789
    Keywords: Key words Carbon dioxide ; Carbon sequestration ; Climate change ; Greenhouse gases ; Mitigation options
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  The International Panel on Climate Change distinguished three main options for the mitigation of atmospheric CO2 concentrations by the agricultural sector: (1) reduction of agriculture-related emissions, (2) creation and strengthening of C sinks in the soil, and (3) production of biofuels to replace fossil fuels. Options for sustained sequestration of C in the soil through adapted management of land resources are reviewed in the context of the ongoing discussion on the need to reduce greenhouse gas concentrations in the atmosphere. Enhanced sequestration of atmospheric CO2 in the soil, ultimately as stable humus, may well prove a more lasting solution than (temporarily) sequestering CO2 in the standing biomass through reforestation and afforestation. Such actions will also help to reverse processes of land degradation, thus contributing to sustained food productivity and security for the people in the regions concerned.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-1480
    Keywords: Carbon sequestration ; agriculture ; cropping practices ; conservation tillage ; Canada
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Increasing carbon sequestration in agricultural soils in Canada is examined as a possible strategy in slowing or stopping the current increase in atmospheric CO2 concentrations. Estimates are provided on the amount of carbon that could be sequestered in soils in various regions in Canada by reducing summerfallow area, increased use of forage crops, improved erosion control, shifts from conventional to minimal and no-till, and more intensive use of fertilizers. The reduction of summerfallow by more intensive agriculture would increase the continuous cropland base by 8.1% in western Canada and 6.8% in all of Canada. Although increased organic carbon (OC) sequestration could be achieved in all agricultural regions, the greatest potential gains are in areas of Chernozemic soils. The best management options include reduction of summerfallow, conversion of fallow areas to hay or continuous cereals, fertilization to ensure nutrient balance, and adoption of soil conservation measures. The adoption of these options could sequester about 50-75% of the total agricultural emissions of CO2 in Canada for the next 30 years. However, increased sequestration of atmospheric carbon in the soil is possible for only a limited time. Increased efforts must be made to reduce emissions if long-term mitigation is to be achieved.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0789
    Keywords: Key words Soil organic carbon ; Geographical Information Systems ; Modelling ; Carbon sequestration ; Hungarian soils
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Soil organic matter (SOM) represents a major pool of carbon within the biosphere. It is estimated at about 1400 Pg globally, which is roughly twice that in atmospheric CO2. The soil can act as both a source and a sink for carbon and nutrients. Changes in agricultural land use and climate can lead to changes in the amount of carbon held in soils, thus, affecting the fluxes of CO2 to and from the atmosphere. Some agricultural management practices will lead to a net sequestration of carbon in the soil. Regional estimates of the carbon sequestration potential of these practices are crucial if policy makers are to plan future land uses to reduce national CO2 emissions. In Europe, carbon sequestration potential has previously been estimated using data from the Global Change and Terrestrial Ecosystems Soil Organic Matter Network (GCTE SOMNET). Linear relationships between management practices and yearly changes in soil organic carbon were developed and used to estimate changes in the total carbon stock of European soils. To refine these semi-quantitative estimates, the local soil type, meteorological conditions and land use must also be taken into account. To this end, we have modified the Rothamsted Carbon Model, so that it can be used in a predictive manner, with SOMNET data. The data is then adjusted for local conditions using Geographical Information Systems databases. In this paper, we describe how these developments can be used to estimate carbon sequestration at the regional level using a dynamic simulation model linked to spatially explicit data. Some calculations of the potential effects of afforestation on soil carbon stocks in Central Hungary provide a simple example of the system in use.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-01-04
    Description: Citation only. Published in Science 316: 567-570, doi: 10.1126/science.1137959
    Description: Funding was obtained primarily through the NSF, Ocean Sciences Programs in Chemical and Biological Oceanography, with additional support from the U.S. Department of Energy, Office of Science, Biological and Environmental Research Program, and other national programs, including the Australian Cooperative Research Centre program and Australian Antarctic Division.
    Keywords: Carbon flux ; Carbon sequestration ; Biological pump
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...