ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for the Advancement of Science  (369,592)
  • Cell Press  (242,170)
Collection
Publisher
Years
  • 1
    Publication Date: 2024-02-07
    Description: Highlights: Recent genomic data reveal that somatic genetic variation (SoGV) is widespread, but evolutionary consequences of this within-organism level of genetic diversity are largely ignored. In modular plant, animal, and fungal species featuring somatic asexual (=clonal) reproduction and long life spans, the segregation of somatic variation into independent modules (ramets) may create phenotypic diversity subject to selection. Recent genomic data suggest that SoGV can be transferred into gametes in species with late-sequestered, transient germlines (all plants and fungi, some basal animals). Somatic evolution is nested within sexual reproduction and needs to be better integrated into population genetic theory for a large number of species encompassing plants, fungi, and basal animals. Somatic genetic variation (SoGV) may play a consequential yet underappreciated role in long-lived, modular species among plants, animals, and fungi. Recent genomic data identified two levels of genetic heterogeneity, between cell lines and between modules, that are subject to multilevel selection. Because SoGV can transfer into gametes when germlines are sequestered late in ontogeny (plants, algae, and fungi and some basal animals), sexual and asexual processes provide interdependent routes of mutational input and impact the accumulation of genetic load and molecular evolution rates of the integrated asexual/sexual life cycle. Avenues for future research include possible fitness effects of SoGV, the identification and implications of multilevel selection, and modeling of asexual selective sweeps using approaches from tumor evolution
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-12
    Description: Mantle-derived noble gases in volcanic gases are powerful tracers of terrestrial volatile evolution, as they contain mixtures of both primordial (from Earth's accretion) and secondary (e.g., radiogenic) isotope signals that characterize the composition of deep Earth. However, volcanic gases emitted through subaerial hydrothermal systems also contain contributions from shallow reservoirs (groundwater, crust, atmosphere). Deconvolving deep and shallow source signals is critical for robust interpretations of mantle-derived signals. Here, we use a novel dynamic mass spectrometry technique to measure argon, krypton, and xenon isotopes in volcanic gas with ultrahigh precision. Data from Iceland, Germany, United States (Yellowstone, Salton Sea), Costa Rica, and Chile show that subsurface isotope fractionation within hydrothermal systems is a globally pervasive and previously unrecognized process causing substantial nonradiogenic Ar-Kr-Xe isotope variations. Quantitatively accounting for this process is vital for accurately interpreting mantle-derived volatile (e.g., noble gas and nitrogen) signals, with profound implications for our understanding of terrestrial volatile evolution.
    Description: Published
    Description: eadg2566
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: noble gases ; earth degassing
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-08
    Description: Bacterial populations face the constant threat of viral predation exerted by bacteriophages (‘phages’). In response, bacteria have evolved a wide range of defense mechanisms against phage challenges. Yet the vast majority of antiphage defense systems described until now are mediated by proteins or RNA complexes acting at the single-cell level. Here, we review small molecule-based defense strategies against phage infection, with a focus on the antiphage molecules described recently. Importantly, inhibition of phage infection by excreted small molecules has the potential to protect entire bacterial communities, highlighting the ecological significance of these antiphage strategies. Considering the immense repertoire of bacterial metabolites, we envision that the list of antiphage small molecules will be further expanded in the future.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-08
    Description: Metabolic interactions between auxotrophs and prototrophs in microbial communities are understudied. Yu et al. showed how intracellular as well as intercellular metabolism affects community fitness in the absence and presence of abiotic stress, that is, drugs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-01-08
    Description: Scenarios—which account for the costs of and interactions among different mitigation options—show that we will need to remove hundreds of gigatons of carbon dioxide (CO2) from the atmosphere over the course of the century to limit warming to well below 2°C, make efforts to limit it to 1.5°C, and ensure the sustained well-being of our planet. Yet at present, only 2 Gt is being removed per year, and nearly all of it is from forestry—only 0.1% is from novel forms of carbon removal. This commentary shows that the deployment of novel CO2 removal (CDR) over the next decade, its formative phase, is likely to be consequential in determining whether CDR will be available at scale and in time to reach net-zero CO2 emissions consistent with the Paris Agreement’s temperature goal.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Elsevier | Cell Press
    Publication Date: 2023-10-06
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-06-21
    Description: Solar light/dark cycles and seasonal photoperiods underpin daily and annual rhythms of life on Earth. Yet, the Arctic is characterized by severalmonths of permanent illumination (‘‘midnight sun’’). To determine the persistence of 24h rhythms during the midnight sun, we investigated transcriptomic dynamics in the copepod Calanus finmarchicus during the summer solstice period in the Arctic, with the lowest diel oscillation and the highest altitude of the sun’s position. Here we reveal that in these extreme photic conditions, a widely rhythmic daily transcriptome exists, showing that very weak solar cues are sufficient to entrain organisms. Furthermore, at extremely high latitudes and under sea-ice, gene oscillations become re-organized to include 〈24h rhythms. Environmental synchronization may therefore be modulated to include non-photic signals (i.e. tidal cycles). The ability of zooplankton to be synchronized by extremely weak diel and potentially tidal cycles, may confer an adaptive temporal reorganization of biological processes at high latitudes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-03-08
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in LeClerc, H., Tompsett, G., Paulsen, A., McKenna, A., Niles, S., Reddy, C., Nelson, R., Cheng, F., Teixeira, A., & Timko, M. Hydroxyapatite catalyzed hydrothermal liquefaction transforms food waste from an environmental liability to renewable fuel. IScience, 25(9), (2022): 104916, https://doi.org/10.1016/j.isci.2022.104916.
    Description: Food waste is an abundant and inexpensive resource for the production of renewable fuels. Biocrude yields obtained from hydrothermal liquefaction (HTL) of food waste can be boosted using hydroxyapatite (HAP) as an inexpensive and abundant catalyst. Combining HAP with an inexpensive homogeneous base increased biocrude yield from 14 ± 1 to 37 ± 3%, resulting in the recovery of 49 ± 2% of the energy contained in the food waste feed. Detailed product analysis revealed the importance of fatty-acid oligomerization during biocrude formation, highlighting the role of acid-base catalysts in promoting condensation reactions. Economic and environmental analysis found that the new technology has the potential to reduce US greenhouse gas emissions by 2.6% while producing renewable diesel with a minimum fuel selling price of $1.06/GGE. HAP can play a role in transforming food waste from a liability to a renewable fuel.
    Description: This work was funded by the DOE Bioenergy Technology Office (DE-EE0008513), a DOE DBIR (DE-SC0015784) and the MassCEC. The authors thank WenWen Yao, Department of Environmental Science at WPI, for TOC analysis, Mainstream Engineering for heating value characterization of the oil and solid samples, Wei Fan for assistance in obtaining SEM images and, Julia Martin and Ronald Grimm for their assistance in collecting XPS data, and Jeffrey R. Page for his assistance with oil upgrading and analysis. HOL was partially funded for this work by NSF Graduate Research Fellowship award number 2038257. A portion of this work was performed at the National High Magnetic Field Laboratory Ion Cyclotron Resonance user facility, which is supported by the NSF Division of Materials Research and Division of Chemistry through DMR 16-44779 and the State of Florida.
    Keywords: Chemistry ; Chemical engineering ; Catalysis
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-08
    Description: The health of the ocean, central to human well-being, has now reached a critical point. Most fish stocks are overexploited, climate change and increased dissolved carbon dioxide are changing ocean chemistry and disrupting species throughout food webs, and the fundamental capacity of the ocean to regulate the climate has been altered. However, key technical, organizational, and conceptual scientific barriers have prevented the identification of policy levers for sustainability and transformative action. Here, we recommend key strategies to address these challenges, including (1) stronger integration of sciences and (2) ocean-observing systems, (3) improved science-policy interfaces, (4) new partnerships supported by (5) a new ocean-climate finance system, and (6) improved ocean literacy and education to modify social norms and behaviors. Adopting these strategies could help establish ocean science as a key foundation of broader sustainability transformations.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-11-18
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tian, Y., Liu, X., Li, J., Deng, Y., DeGiorgis, J. A., Zhou, S., Caratenuto, A., Minus, M. L., Wan, Y., Xiao, G., & Zheng, Y. Farm-waste-derived recyclable photothermal evaporator. Cell Reports Physical Science, 2(9), (2021): 100549, https://doi.org/10.1016./j.xcrp.2021.100549
    Description: Interfacial solar steam generation is emerging as a promising technique for efficient desalination. Although increasing efforts have been made, challenges exist for achieving a balance among a plethora of performance indicators—for example, rapid evaporation, durability, low-cost deployment, and salt rejection. Here, we demonstrate that carbonized manure can convert 98% of sunlight into heat, and the strong capillarity of porous carbon fibers networks pumps sufficient water to evaporation interfaces. Salt diffusion within microchannels enables quick salt drainage to the bulk seawater to prevent salt accumulation. With these advantages, this biomass-derived evaporator is demonstrated to feature a high evaporation rate of 2.81 kg m−2 h−1 under 1 sun with broad robustness to acidity and alkalinity. These advantages, together with facial deployment, offer an approach for converting farm waste to energy with high efficiency and easy implementation, which is particularly well suited for developing regions.
    Description: This project is supported by the National Science Foundation through grant no. CBET-1941743. This project is based upon work supported in part by the National Science Foundation under EPSCoR Cooperative Agreement no. OIA-1655221.
    Keywords: Biomass ; Recyclable ; Manure ; Farm waste ; Photothermal evaporation ; Desalination
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Meaders, J. L., de Matos, S. N., & Burgess, D. R. A pushing mechanism for microtubule aster positioning in a large cell type. Cell Reports, 33(1), (2020): 108213, doi:10.1016/j.celrep.2020.108213.
    Description: After fertilization, microtubule (MT) sperm asters undergo long-range migration to accurately position pronuclei. Due to the large sizes of zygotes, the forces driving aster migration are considered to be from pulling on the astral MTs by dynein, with no significant contribution from pushing forces. Here, we re-investigate the forces responsible for sperm aster centration in sea urchin zygotes. Our quantifications of aster geometry and MT density preclude a pulling mechanism. Manipulation of aster radial lengths and growth rates, combined with quantitative tracking of aster migration dynamics, indicates that aster migration is equal to the length of rear aster radii, supporting a pushing model for centration. We find that dynein inhibition causes an increase in aster migration rates. Finally, ablation of rear astral MTs halts migration, whereas front and side ablations do not. Collectively, our data indicate that a pushing mechanism can drive the migration of asters in a large cell type.
    Description: We would like to thank Dr. Jesse Gatlin for sending us the Tau-mCherry fusion protein for imaging live MTs. We would also like to thank Dr. Timothy Mitchison, Dr. Christine Field, and Dr. James Pelletier for supplying us with CA4, p150-CC1, and EB1-GFP peptides, as well as for fruitful discussions. Finally, we would like to thank Dr. Charles Shuster and Leslie Toledo-Jacobo for constructive feedback when preparing the manuscript. We thank Bret Judson and the Boston College Imaging Core for infrastructure and support. This material is based upon work supported by NSF grant no. 124425 to D.R.B.
    Keywords: Dynein ; Aster ; Microtubule ; Centrosome ; Pronucleus ; Fertilization ; Aster position
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-10-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Stolp, Z. D., Kulkarni, M., Liu, Y., Zhu, C., Jalisi, A., Lin, S., Casadevall, A., Cunningham, K. W., Pineda, F. J., Teng, X., & Hardwick, J. M. Yeast cell death pathway requiring AP-3 vesicle trafficking leads to vacuole/lysosome membrane permeabilization. Cell Reports, 39(2), (2022): 110647, https://doi.org/10.1016/j.celrep.2022.110647.
    Description: Unicellular eukaryotes have been suggested as undergoing self-inflicted destruction. However, molecular details are sparse compared with the mechanisms of programmed/regulated cell death known for human cells and animal models. Here, we report a molecular cell death pathway in Saccharomyces cerevisiae leading to vacuole/lysosome membrane permeabilization. Following a transient cell death stimulus, yeast cells die slowly over several hours, consistent with an ongoing molecular dying process. A genome-wide screen for death-promoting factors identified all subunits of the AP-3 complex, a vesicle trafficking adapter known to transport and install newly synthesized proteins on the vacuole/lysosome membrane. To promote cell death, AP-3 requires its Arf1-GTPase-dependent vesicle trafficking function and the kinase Yck3, which is selectively transported to the vacuole membrane by AP-3. Video microscopy revealed a sequence of events where vacuole permeability precedes the loss of plasma membrane integrity. AP-3-dependent death appears to be conserved in the human pathogenic yeast Cryptococcus neoformans.
    Description: Funding sources: National Institutes of Health, United States grants AI144373 and NS127076 (J.M.H.), AI115016 and AI153414 (K.W.C.), and AI052733, AI152078, and HL059842 (A.C.); National Natural Science Foundation of China 31970550; and the Priority Academic Program Development of the Jiangsu Higher Education Institutes (X.T.).
    Keywords: Yeast ; Programmed cell death ; Vesicle trafficking ; AP-3 ; Vacuole ; Cryptococcus ; Yck3 ; Regulated cell death ; Lysosome ; Vacuolar membrane permeabilization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science
    In:  EPIC3Science, American Association for the Advancement of Science, 371(6531), pp. 811-818
    Publication Date: 2022-10-01
    Description: Geological archives record multiple reversals of Earth's magnetic poles, but the global impacts of these events, if any, remain unclear. Uncertain radiocarbon calibration has limited investigation of the potential effects of the last major magnetic inversion, known as the Laschamps Excursion 41 to 42 thousand years ago (ka). We use ancient New Zealand kauri trees (Agathis australis) to develop a detailed record of atmospheric radiocarbon levels across the Laschamps Excursion. We precisely characterize the geomagnetic reversal and perform global chemistry-climate modeling and detailed radiocarbon dating of paleoenvironmental records to investigate impacts. We find that geomagnetic field minima ~42 ka, in combination with Grand Solar Minima, caused substantial changes in atmospheric ozone concentration and circulation, driving synchronous global climate shifts that caused major environmental changes, extinction events, and transformations in the archaeological record.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-09-13
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Liu, C.-Z., Dick, H. J. B., Mitchell, R. N., Wei, W., Zhang, Z.-Y., Hofmann, A. W., Yang, J.-F., & Li, Y. Archean cratonic mantle recycled at a mid-ocean ridge. Science Advances, 8(22), (2022): eabn6749, https://doi.org/10.1126/sciadv.abn6749.
    Description: Basalts and mantle peridotites of mid-ocean ridges are thought to sample Earth’s upper mantle. Osmium isotopes of abyssal peridotites uniquely preserve melt extraction events throughout Earth history, but existing records only indicate ages up to ~2 billion years (Ga) ago. Thus, the memory of the suspected large volumes of mantle lithosphere that existed in Archean time (〉2.5 Ga) has apparently been lost somehow. We report abyssal peridotites with melt-depletion ages up to 2.8 Ga, documented by extremely unradiogenic 187Os/188Os ratios (to as low as 0.1095) and refractory major elements that compositionally resemble the deep keels of Archean cratons. These oceanic rocks were thus derived from the once-extensive Archean continental keels that have been dislodged and recycled back into the mantle, the feasibility of which we confirm with numerical modeling. This unexpected connection between young oceanic and ancient continental lithosphere indicates an underappreciated degree of compositional recycling over time.
    Description: This study was financially supported by the National Science Fund for Distinguished Young Scholars 42025201 (to C.-Z.L.), the National Key Research and Development Project of China 2020YFA0714801 (to C.-Z.L.), the Strategic Priority Research Program of the Chinese Academy of Sciences XDA13010106 (to C.-Z.L.), the Strategic Priority Research Program of the Chinese Academy of Sciences XDB42020301 (to C.-Z.L.), and NSF grants 2114652 and 1657983 (to H.J.B.D.).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-08-30
    Description: Most tropical corals live in symbiosis with Symbiodiniaceae algae whose photosynthetic production of oxygen (O2) may lead to excess O2 in the diffusive boundary layer (DBL) above the coral surface. When flow is low, cilia-induced mixing of the coral DBL is vital to remove excess O2 and prevent oxidative stress that may lead to coral bleaching and mortality. Here, we combined particle image velocimetry using O2-sensitive nanoparticles (sensPIV) with chlorophyll (Chla)-sensitive hyperspectral imaging to visualize the microscale distribution and dynamics of ciliary flows and O2 in the coral DBL in relation to the distribution of Symbiodiniaceae Chla in the tissue of the reef building coral, Porites lutea. Curiously, we found an inverse relation between O2 in the DBL and Chla in the underlying tissue, with patches of high O2 in the DBL above low Chla in the underlying tissue surrounding the polyp mouth areas and pockets of low O2 concentrations in the DBL above high Chla in the coenosarc tissue connecting neighboring polyps. The spatial segregation of Chla and O2 is related to ciliary-induced flows, causing a lateral redistribution of O2 in the DBL. In a 2D transport-reaction model of the coral DBL, we show that the enhanced O2 transport allocates parts of the O2 surplus to areas containing less chla, which minimizes oxidative stress. Cilary flows thus confer a spatially complex mass transfer in the coral DBL, which may play an important role in mitigating oxidative stress and bleaching in corals.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-07-25
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Peng, Q., Xie, S.-P., Wang, D., Huang, R. X., Chen, G., Shu, Y., Shi, J.-R., & Liu, W. Surface warming-induced global acceleration of upper ocean currents. Science Advances, 8(16), (2022): eabj8394, https://doi.org/10.1126/sciadv.abj8394.
    Description: How the ocean circulation changes in a warming climate is an important but poorly understood problem. Using a global ocean model, we decompose the problem into distinct responses to changes in sea surface temperature, salinity, and wind. Our results show that the surface warming effect, a robust feature of anthropogenic climate change, dominates and accelerates the upper ocean currents in 77% of the global ocean. Specifically, the increased vertical stratification intensifies the upper subtropical gyres and equatorial currents by shoaling these systems, while the differential warming between the Southern Ocean upwelling zone and the region to the north accelerates surface zonal currents in the Southern Ocean. In comparison, the wind stress and surface salinity changes affect regional current systems. Our study points a way forward for investigating ocean circulation change and evaluating the uncertainty.
    Description: Q.P. is supported by the National Natural Science Foundation of China (42005035), the Science and Technology Planning Project of Guangzhou (202102020935), and the Independent Research Project Program of State Key Laboratory of Tropical Oceanography (LTOZZ2102). D.W. is supported by the National Natural Science Foundation of China (92158204), and the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (311020004). S.-P.X. is supported by the National Science Foundation (AGS-1934392). Y.S. is supported by the National Key Research and Development Program of China (2016YFC1401702). G.C. is supported by National Natural Science Foundation of China (41822602). The numerical simulation is supported by the High-Performance Computing Division and HPC managers of W. Zhou and D. Sui in the South China Sea Institute of Oceanology.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-06-20
    Description: Accurate quantification of the millennial-scale mass balance of the Greenland ice sheet (GrIS) and its contribution to global sea-level rise remain challenging because of sparse in situ observations in key regions. Glacial isostatic adjustment (GIA) is the ongoing response of the solid Earth to ice and ocean load changes occurring since the Last Glacial Maximum (LGM; ~21 thousand years ago) and may be used to constrain the GrIS deglaciation history. We use data from the Greenland Global Positioning System network to directly measure GIA and estimate basin-wide mass changes since the LGM. Unpredicted, large GIA uplift rates of +12 mm/year are found in southeast Greenland. These rates are due to low upper mantle viscosity in the region, from when Greenland passed over the Iceland hot spot about 40 million years ago. This region of concentrated soft rheology has a profound influence on reconstructing the deglaciation history of Greenland. We reevaluate the evolution of the GrIS since LGM and obtain a loss of 1.5-m sea-level equivalent from the northwest and southeast. These same sectors are dominating modern mass loss. We suggest that the present destabilization of these marine-based sectors may increase sea level for centuries to come. Our new deglaciation history and GIA uplift estimates suggest that studies that use the Gravity Recovery and Climate Experiment satellite mission to infer present-day changes in the GrIS may have erroneously corrected for GIA and underestimated the mass loss by about 20 gigatons/year.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    American Association for the Advancement of Science
    Publication Date: 2022-06-09
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Freeman, D. H., & Ward, C. P. Sunlight-driven dissolution is a major fate of oil at sea. Science Advances, 8(7), (2022): eabl7605, https://doi.org/10.1126/sciadv.abl7605.
    Description: Oxygenation reactions initiated by sunlight can transform insoluble components of crude oil at sea into water-soluble products, a process called photo-dissolution. First reported a half century ago, photo-dissolution has never been included in spill models because key parameters required for rate modeling were unknown, including the wavelength and photon dose dependence. Here, we experimentally quantified photo-dissolution as a function of wavelength and photon dose, making possible a sensitivity analysis of environmental variables in hypothetical spill scenarios and a mass balance assessment for the 2010 Deepwater Horizon (DwH) spill. The sensitivity analysis revealed that rates were most sensitive to oil slick thickness, season/latitude, and wavelength and less sensitive to photon dose. We estimate that 3 to 17% (best estimate 8%) of DwH surface oil was subject to photo-dissolution, comparable in magnitude to other widely recognized fate processes. Our findings invite a critical reevaluation of surface oil budgets for both DwH and future spills at sea.
    Description: This work was supported by the Fisheries and Oceans Canada Multi-Partner Research Initiative award to C.P.W. (project #1.06), the NSF Graduate Research Fellowship awarded to D.H.F. (award #174530), and NSF-OCE grant #1841092 to C.P.W.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gomaa, F., Utter, D. R., Powers, C., Beaudoin, D. J., Edgcomb, V. P., Filipsson, H. L., Hansel, C. M., Wankel, S. D., Zhang, Y., & Bernhard, J. M. Multiple integrated metabolic strategies allow foraminiferan protists to thrive in anoxic marine sediments. Science Advances, 7(22), (2021): eabf1586, https://doi.org/10.1126/sciadv.abf1586.
    Description: Oceanic deoxygenation is increasingly affecting marine ecosystems; many taxa will be severely challenged, yet certain nominally aerobic foraminifera (rhizarian protists) thrive in oxygen-depleted to anoxic, sometimes sulfidic, sediments uninhabitable to most eukaryotes. Gene expression analyses of foraminifera common to severely hypoxic or anoxic sediments identified metabolic strategies used by this abundant taxon. In field-collected and laboratory-incubated samples, foraminifera expressed denitrification genes regardless of oxygen regime with a putative nitric oxide dismutase, a characteristic enzyme of oxygenic denitrification. A pyruvate:ferredoxin oxidoreductase was highly expressed, indicating the capability for anaerobic energy generation during exposure to hypoxia and anoxia. Near-complete expression of a diatom’s plastid genome in one foraminiferal species suggests kleptoplasty or sequestration of functional plastids, conferring a metabolic advantage despite the host living far below the euphotic zone. Through a unique integration of functions largely unrecognized among “typical” eukaryotes, benthic foraminifera represent winning microeukaryotes in the face of ongoing oceanic deoxygenation.
    Description: his project was funded by the U.S. NSF IOS 1557430 and 1557566. H.L.F. acknowledges support from the Swedish Research Council VR (grant number 2017-04190).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Le Roux, V., Urann, B. M., Brunelli, D., Bonatti, E., Cipriani, A., Demouchy, S., & Monteleone, B. D. Postmelting hydrogen enrichment in the oceanic lithosphere. Science Advances, 7(24), (2021): eabf6071, https://doi.org/10.1126/sciadv.abf6071.
    Description: The large range of H2O contents recorded in minerals from exhumed mantle rocks has been challenging to interpret, as it often records a combination of melting, metasomatism, and diffusional processes in spatially isolated samples. Here, we determine the temporal variations of H2O contents in pyroxenes from a 24-Ma time series of abyssal peridotites exposed along the Vema fracture zone (Atlantic Ocean). The H2O contents of pyroxenes correlate with both crustal ages and pyroxene chemistry and increase toward younger and more refractory peridotites. These variations are inconsistent with residual values after melting and opposite to trends often observed in mantle xenoliths. Postmelting hydrogen enrichment occurred by ionic diffusion during cryptic metasomatism of peridotite residues by low-degree, volatile-rich melts and was particularly effective in the most depleted peridotites. The presence of hydrous melts under ridges leads to widespread hydrogen incorporation in the oceanic lithosphere, likely lowering mantle viscosity compared to dry models.
    Description: Funding for this study was supported by NSF EAR-P&G 1524311 and 1839128 to V.L.R. and the Andrew W. Mellon Foundation Award for Innovative Research to V.L.R. A.C. and D.B. were funded by the Italian Programma di Rilevante Interesse Nazionale PRIN 20178LPCPW and PRIN2017KY5ZX8, respectively. Revisions were performed within the duration of a “Visiting Scholar at SCIENCE 2020” award to V.L.R. (University of Copenhagen, Denmark), with support from the Department of Geosciences and Natural Resource Management, Section for Geology.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Clemens, S. C., Yamamoto, M., Thirumalai, K., Giosan, L., Richey, J. N., Nilsson-Kerr, K., Rosenthal, Y., Anand, P., & McGrath, S. M. Remote and local drivers of Pleistocene South Asian summer monsoon precipitation: a test for future predictions. Science Advances, 7(23), (2021): eabg3848, https://doi.org/10.1126/sciadv.abg3848.
    Description: South Asian precipitation amount and extreme variability are predicted to increase due to thermodynamic effects of increased 21st-century greenhouse gases, accompanied by an increased supply of moisture from the southern hemisphere Indian Ocean. We reconstructed South Asian summer monsoon precipitation and runoff into the Bay of Bengal to assess the extent to which these factors also operated in the Pleistocene, a time of large-scale natural changes in carbon dioxide and ice volume. South Asian precipitation and runoff are strongly coherent with, and lag, atmospheric carbon dioxide changes at Earth’s orbital eccentricity, obliquity, and precession bands and are closely tied to cross-equatorial wind strength at the precession band. We find that the projected monsoon response to ongoing, rapid high-latitude ice melt and rising carbon dioxide levels is fully consistent with dynamics of the past 0.9 million years.
    Description: S.C.C. and S.M.M. were supported by U.S. NSF OCE1634774. M.Y. was funded by JSPS grants JPMXS05R2900001 and 19H05595 and JAMSTEC Exp. 353 postcruise study. K.N.-K. and P.A. were supported by UK-IODP, Open University, and NERC (NE/L002493/1), K.T. was supported by the Technology and Research Initiative Fund, Arizona Board of Regents.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Seltzer, A. M., Bekaert, D. V., Barry, P. H., Durkin, K. E., Mace, E. K., Aalseth, C. E., Zappala, J. C., Mueller, P., Jurgens, B., & Kulongoski, J. T. Groundwater residence time estimates obscured by anthropogenic carbonate. Science Advances, 7(17), (2021): eabf3503, https://doi.org/10.1126/sciadv.abf3503.
    Description: Groundwater is an important source of drinking and irrigation water. Dating groundwater informs its vulnerability to contamination and aids in calibrating flow models. Here, we report measurements of multiple age tracers (14C, 3H, 39Ar, and 85Kr) and parameters relevant to dissolved inorganic carbon (DIC) from 17 wells in California’s San Joaquin Valley (SJV), an agricultural region that is heavily reliant on groundwater. We find evidence for a major mid-20th century shift in groundwater DIC input from mostly closed- to mostly open-system carbonate dissolution, which we suggest is driven by input of anthropogenic carbonate soil amendments. Crucially, enhanced open-system dissolution, in which DIC equilibrates with soil CO2, fundamentally affects the initial 14C activity of recently recharged groundwater. Conventional 14C dating of deeper SJV groundwater, assuming an open system, substantially overestimates residence time and thereby underestimates susceptibility to modern contamination. Because carbonate soil amendments are ubiquitous, other groundwater-reliant agricultural regions may be similarly affected.
    Description: his work was conducted as a part of the USGS National Water Quality Assessment Program (NAWQA) Enhanced Trends Project (https://water.usgs.gov/nawqa/studies/gwtrends/). Measurements at Argonne National Laboratory were supported by Department of Energy, Office of Science under contract DE-AC02-06CH11357. Measurements at Pacific Northwest National Laboratory were part of the Ultra-Sensitive Nuclear Measurements Initiative conducted under the Laboratory Directed Research and Development Program. PNNL is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. This work was also partially supported by NSF award OCE-1923915 (to A.M.S. and P.H.B. at WHOI).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zhang, Y., Gazel, E., Gaetani, G. A., & Klein, F. Serpentinite-derived slab fluids control the oxidation state of the subarc mantle. Science Advances, 7(48), (2021): eabj2515, https://doi.org/10.1126/sciadv.abj2515.
    Description: Recent geochemical evidence confirms the oxidized nature of arc magmas, but the underlying processes that regulate the redox state of the subarc mantle remain yet to be determined. We established a link between deep subduction-related fluids derived from dehydration of serpentinite ± altered oceanic crust (AOC) using B isotopes and B/Nb as fluid proxies, and the oxidized nature of arc magmas as indicated by Cu enrichment during magma evolution and V/Yb. Our results suggest that arc magmas derived from source regions influenced by a greater serpentinite (±AOC) fluid component record higher oxygen fugacity. The incorporation of this component into the subarc mantle is controlled by the subduction system’s thermodynamic conditions and geometry. Our results suggest that the redox state of the subarc mantle is not homogeneous globally: Primitive arc magmas associated with flat, warm subduction are less oxidized overall than those generated in steep, cold subduction zones.
    Description: Y.Z. acknowledges funding from the National Science Foundation of China (91958213), the Chinese Academy of Sciences (XDB42020402), and the Shandong Provincial Natural Science Foundation, China (ZR2020QD068). This study was supported in part by the U.S. National Science Foundation NSF EAR 1826673 to E.G. and G.A.G. and OCE 1756349 to E.G.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Trembath-Reichert, E., Shah Walter, S. R., Ortiz, M. A. F., Carter, P. D., Girguis, P. R., & Huber, J. A. Multiple carbon incorporation strategies support microbial survival in cold subseafloor crustal fluids. Science Advances, 7(18), (2021): eabg0153, https://doi.org/10.1126/sciadv.abg0153.
    Description: Biogeochemical processes occurring in fluids that permeate oceanic crust make measurable contributions to the marine carbon cycle, but quantitative assessments of microbial impacts on this vast, subsurface carbon pool are lacking. We provide bulk and single-cell estimates of microbial biomass production from carbon and nitrogen substrates in cool, oxic basement fluids from the western flank of the Mid-Atlantic Ridge. The wide range in carbon and nitrogen incorporation rates indicates a microbial community well poised for dynamic conditions, potentially anabolizing carbon and nitrogen at rates ranging from those observed in subsurface sediments to those found in on-axis hydrothermal vent environments. Bicarbonate incorporation rates were highest where fluids are most isolated from recharging bottom seawater, suggesting that anabolism of inorganic carbon may be a potential strategy for supplementing the ancient and recalcitrant dissolved organic carbon that is prevalent in the globally distributed subseafloor crustal environment.
    Description: The Gordon and Betty Moore Foundation sponsored most of the observatory components at North Pond through grant GBMF1609. This work was supported by the National Science Foundation through grants NSF OCE-1745589, OCE-1635208, and OCE-1062006 to J.A.H. and NSF OCE-1635365 to P.R.G. and S.R.S.W.; NASA Postdoctoral Fellowship with the NASA Astrobiology Institute to E.T.-R.; L’Oréal USA For Women in Science Fellowship to E.T.-R.; and Woods Hole Partnership Education Program, sponsored by the Woods Hole Diversity Initiative to M.A.F.O. The Center for Dark Energy Biosphere Investigations (C-DEBI OCE-0939564) also supported the participation of J.A.H. and P.D.C. This is C-DEBI contribution number 564.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Johnson, A. C., Ostrander, C. M., Romaniello, S. J., Reinhard, C. T., Greaney, A. T., Lyons, T. W., & Anbar, A. D. Reconciling evidence of oxidative weathering and atmospheric anoxia on Archean Earth. Science Advances, 7(40), (2021): eabj0108, https://doi.org/10.1126/sciadv.abj0108.
    Description: Evidence continues to emerge for the production and low-level accumulation of molecular oxygen (O2) at Earth’s surface before the Great Oxidation Event. Quantifying this early O2 has proven difficult. Here, we use the distribution and isotopic composition of molybdenum in the ancient sedimentary record to quantify Archean Mo cycling, which allows us to calculate lower limits for atmospheric O2 partial pressures (PO2) and O2 production fluxes during the Archean. We consider two end-member scenarios. First, if O2 was evenly distributed throughout the atmosphere, then PO2 〉 10–6.9 present atmospheric level was required for large periods of time during the Archean eon. Alternatively, if O2 accumulation was instead spatially restricted (e.g., occurring only near the sites of O2 production), then O2 production fluxes 〉0.01 Tmol O2/year were required. Archean O2 levels were vanishingly low according to our calculations but substantially above those predicted for an abiotic Earth system.
    Description: We would like to thank our funding sources, including FESD “Dynamics of Earth System Oxygenation” (NSF EAR 1338810 to A.D.A.), NASA Earth and Space Science Fellowship awarded to A.C.J. (80NSSC17K0498), NSF EAR PF to A.C.J. (1952809), and WHOI Postdoctoral Fellowship to C.M.O. C.T.R. acknowledges support from the NASA Astrobiology Institute. We also acknowledge support from the Metal Utilization and Selection across Eons (MUSE) Interdisciplinary Consortium for Astrobiology Research, sponsored by the National Aeronautics and Space Administration Science Mission Directorate (19-ICAR19_2-0007).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bekaert, D. V., Auro, M., Shollenberger, Q. R., Liu, M.-C., Marschall, H., Burton, K. W., Jacobsen, B., Brennecka, G. A., McPherson, G. J., von Mutius, R., Sarafian, A., & Nielsen, S. G. Fossil records of early solar irradiation and cosmolocation of the CAI factory: a reappraisal. Science Advances, 7(40), (2021): eabg8329, https://doi.org/10.1126/sciadv.abg8329.
    Description: Calcium-aluminum–rich inclusions (CAIs) in meteorites carry crucial information about the environmental conditions of the nascent Solar System prior to planet formation. Based on models of 50V–10Be co-production by in-situ irradiation, CAIs are considered to have formed within ~0.1 AU from the proto-Sun. Here, we present vanadium (V) and strontium (Sr) isotopic co-variations in fine- and coarse-grained CAIs and demonstrate that kinetic isotope effects during partial condensation and evaporation best explain V isotope anomalies previously attributed to solar particle irradiation. We also report initial excesses of 10Be and argue that CV CAIs possess essentially a homogeneous level of 10Be, inherited during their formation. Based on numerical modeling of 50V–10Be co-production by irradiation, we show that CAI formation during protoplanetary disk build-up likely occurred at greater heliocentric distances than previously considered, up to planet-forming regions (~1AU), where solar particle fluxes were sufficiently low to avoid substantial in-situ irradiation of CAIs.
    Description: This study was funded by NASA Emerging Worlds grant NNX16AD36G to S.G.N. and prepared by LLNL under contract DE-AC52-07NA27344 with release number LLNL-JRNL-819045. M.C.L acknowledges the support by the NASA grant 80NSSC20K0759. The UCLA ion microprobe facility is partially supported by a grant from the NSF Instrumentation and Facilities program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-05-26
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances, 4(12), (2018): eaau5180. doi: 10.1126/sciadv.aau5180.
    Description: Oxygen minimum zones (OMZs), large midwater regions of very low oxygen, are expected to expand as a result of climate change. While oxygen is known to be important in structuring midwater ecosystems, a precise and mechanistic understanding of the effects of oxygen on zooplankton is lacking. Zooplankton are important components of midwater food webs and biogeochemical cycles. Here, we show that, in the eastern tropical North Pacific OMZ, previously undescribed submesoscale oxygen variability has a direct effect on the distribution of many major zooplankton groups. Despite extraordinary hypoxia tolerance, many zooplankton live near their physiological limits and respond to slight (≤1%) changes in oxygen. Ocean oxygen loss (deoxygenation) may, thus, elicit major unanticipated changes to midwater ecosystem structure and function.
    Description: We thank the captain and crew of the R/V Sikuliaq (University of Alaska) and Scripps Institution of Oceanography for additional technical services. Thanks also to D. Ullman and D. Casagrande for Wire Flyer assistance; C. Matson and J. Calderwood for MOCNESS upgrades; S. Gordon (professional photographer, Open Boat Films LLC) for the photographs and movies; and A. Dymowska, J. Ivory, Y. Jin, J. McGreal, and N. Redmond for help at sea. Funding: Funding was provided by the NSF grants OCE1459243 (to K.F.W., C.R., and B.A.S.), OCE1458967 (to C.D.), DGE1244657 (to M.A.B.), and OCE1460819 (URI REU SURFO program to S.R.) plus funding from our respective institutions. Author contributions: K.F.W., B.A.S., C.R., and C.D. conceived the project. K.F.W. led the writing effort, with substantial contributions from all the authors. K.F.W. directed the MOCNESS component including zooplankton abundance and biomass quantification. B.A.S. directed the metabolic experiments and Tucker trawls. C.R. directed the Wire Flyer work. B.A.S., C.D., K.A.S.M., and M.A.B. developed the MI models. D.O., C.T.S., D.M., and S.R. processed and analyzed the zooplankton data. T.J.A. processed the MOCNESS hydrographic data. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Extensive files of continuous hydrographic data from transects are available from C.R. (Wire Flyer) and K.F.W. (MOCNESS). Additional data related to this paper may be requested from the authors.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cell 7 (2014): 1601–1613, doi:10.1016/j.celrep.2014.04.047.
    Description: We used high-speed optogenetic mapping technology to examine the spatial organization of local inhibitory circuits formed by cerebellar interneurons. Transgenic mice expressing channelrhodopsin-2 exclusively in molecular layer interneurons allowed us to focally photostimulate these neurons, while measuring resulting responses in postsynaptic Purkinje cells. This approach revealed that interneurons converge upon Purkinje cells over a broad area and that at least seven interneurons form functional synapses with a single Purkinje cell. The number of converging interneurons was reduced by treatment with gap junction blockers, revealing that electrical synapses between interneurons contribute substantially to the spatial convergence. Remarkably, gap junction blockers affected convergence in sagittal slices, but not in coronal slices, indicating a sagittal bias in electrical coupling between interneurons. We conclude that electrical synapse networks spatially coordinate interneurons in the cerebellum and may also serve this function in other brain regions.
    Description: This work was supported by a CRP grant from the National Research Foundation of Singapore and by the World Class Institute (WCI) Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology of Korea (NRF grant number WCI 2009-003).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 2 (2016): e1600883, doi:10.1126/sciadv.1600883.
    Description: The formation of the Isthmus of Panama stands as one of the greatest natural events of the Cenozoic, driving profound biotic transformations on land and in the oceans. Some recent studies suggest that the Isthmus formed many millions of years earlier than the widely recognized age of approximately 3 million years ago (Ma), a result that if true would revolutionize our understanding of environmental, ecological, and evolutionary change across the Americas. To bring clarity to the question of when the Isthmus of Panama formed, we provide an exhaustive review and reanalysis of geological, paleontological, and molecular records. These independent lines of evidence converge upon a cohesive narrative of gradually emerging land and constricting seaways, with formation of the Isthmus of Panama sensu stricto around 2.8 Ma. The evidence used to support an older isthmus is inconclusive, and we caution against the uncritical acceptance of an isthmus before the Pliocene.
    Description: This study was supported by the Smithsonian Tropical Research Institute to A.O., J.B.C.J., N.K., and H.A.L.; the NSF (EAR 1325683) to A.O., P.G.R.-D., and E.L.G.; the National System of Investigators to A.O.; the Secretaría Nacional de Ciencia, Tecnología e Innovación (Panamá) to A.O., H.A.L., and S.E.C.; the U.S. Geological Survey to R.F.S.; and the Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina) to A.L.C., G.M.G., E.S., and L.S.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Reusch, S., Biswas, A., Hirst, W. G., & Reber, S. Affinity purification of label-free tubulins from xenopus egg extracts. STAR Protocols, 1(3), (2020): 100151, doi:10.1016/j.xpro.2020.100151.
    Description: Cytoplasmic extracts from unfertilized Xenopus eggs have made important contributions to our understanding of microtubule dynamics, spindle assembly, and scaling. Until recently, these in vitro studies relied on the use of heterologous tubulin. This protocol allows for the purification of physiologically relevant Xenopus tubulins in milligram yield, which are a complex mixture of isoforms with various post-translational modifications. The protocol is applicable to any cell or tissue of interest. For complete details on the use and execution of this protocol, please refer to Hirst et al. (2020).
    Description: This article was prompted by our stay at the Marine Biological Laboratory (MBL), Woods Hole, MA, in the summer of 2016 funded by the Princeton-Humboldt Strategic Partnership Grant together with the lab of Sabine Petry (Princeton University). We are grateful to the National Xenopus Resource (NXR) for supplying frogs. For mass spectrometry, we would like to acknowledge the assistance of Benno Kuropka and Chris Weise from the Core Facility BioSupraMol supported by the Deutsche Forschungsgemeinschaft (DFG). We thank the Protein Expression Purification and Characterization (PEPC) facility at the MPI-CBG; in particular, we thank Aliona Bogdanova and Barbara Borgonovo. We thank all former and current members of the Reber lab for discussions and helpful advice, in particular Christoph Hentschel and Soma Zsoter for technical assistance. S.R. acknowledges funding from the IRI Life Sciences (Humboldt-Universität zu Berlin, Excellence Initiative/DFG). W.H. was supported by the Alliance Berlin Canberra co-funded by a grant from the Deutsche Forschungsgemeinschaft (DFG) for the International Research Training Group (IRTG) 2290 and the Australian National University.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in DiBenedetto, M., Qin, Z., & Suckale, J. Crystal aggregates record the pre-eruptive flow field in the volcanic conduit at Kilauea, Hawaii. Science Advances, 6(49), (2020): eabd4850, doi:10.1126/sciadv.abd4850.
    Description: Developing reliable, quantitative conduit models that capture the physical processes governing eruptions is hindered by our inability to observe conduit flow directly. The closest we get to direct evidence is testimony imprinted on individual crystals or bubbles in the conduit and preserved by quenching during the eruption. For example, small crystal aggregates in products of the 1959 eruption of Kīlauea Iki, Hawaii contain overgrown olivines separated by large, hydrodynamically unfavorable angles. The common occurrence of these aggregates calls for a flow mechanism that creates this crystal misorientation. Here, we show that the observed aggregates are the result of exposure to a steady wave field in the conduit through a customized, process-based model at the scale of individual crystals. We use this model to infer quantitative attributes of the flow at the time of aggregate formation; notably, the formation of misoriented aggregates is only reproduced in bidirectional, not unidirectional, conduit flow.
    Description: M.D. acknowledges support the Stanford Gerald J. Lieberman Fellowship and the Postdoctoral Scholarship from Woods Hole Oceanographic Institution.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Praetorius, S. K., Condron, A., Mix, A. C., Walczak, M. H., McKay, J. L., & Du, J. The role of northeast pacific meltwater events in deglacial climate change. Science Advances, 6(9), (2020): eaay2915, doi:10.1126/sciadv.aay2915.
    Description: Columbia River megafloods occurred repeatedly during the last deglaciation, but the impacts of this fresh water on Pacific hydrography are largely unknown. To reconstruct changes in ocean circulation during this period, we used a numerical model to simulate the flow trajectory of Columbia River megafloods and compiled records of sea surface temperature, paleo-salinity, and deep-water radiocarbon from marine sediment cores in the Northeast Pacific. The North Pacific sea surface cooled and freshened during the early deglacial (19.0-16.5 ka) and Younger Dryas (12.9-11.7 ka) intervals, coincident with the appearance of subsurface water masses depleted in radiocarbon relative to the sea surface. We infer that Pacific meltwater fluxes contributed to net Northern Hemisphere cooling prior to North Atlantic Heinrich Events, and again during the Younger Dryas stadial. Abrupt warming in the Northeast Pacific similarly contributed to hemispheric warming during the Bølling and Holocene transitions. These findings underscore the importance of changes in North Pacific freshwater fluxes and circulation in deglacial climate events.
    Description: The research was partly supported by the NSF through grants ARC-257 1204045 and PLR-1417667. The numerical model simulations used resources from the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under contract no. DE-AC02-05CH11231.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    American Association for the Advancement of Science
    Publication Date: 2022-05-26
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 4 (2018): e1701504, doi:10.1126/sciadv.1701504.
    Description: Salinity, rather than temperature, is the leading influence on density in some regions of the world’s upper oceans. In the Bay of Bengal, heavy monsoonal rains and runoff generate strong salinity gradients that define density fronts and stratification in the upper ~50 m. Ship-based observations made in winter reveal that fronts exist over a wide range of length scales, but at O(1)-km scales, horizontal salinity gradients are compensated by temperature to alleviate about half the cross-front density gradient. Using a process study ocean model, we show that scale-selective compensation occurs because of surface cooling. Submesoscale instabilities cause density fronts to slump, enhancing stratification along-front. Specifically for salinity fronts, the surface mixed layer (SML) shoals on the less saline side, correlating sea surface salinity (SSS) with SML depth at O(1)-km scales. When losing heat to the atmosphere, the shallower and less saline SML experiences a larger drop in temperature compared to the adjacent deeper SML on the salty side of the front, thus correlating sea surface temperature (SST) with SSS at the submesoscale. This compensation of submesoscale fronts can diminish their strength and thwart the forward cascade of energy to smaller scales. During winter, salinity fronts that are dynamically submesoscale experience larger temperature drops, appearing in satellite-derived SST as cold filaments. In freshwater-influenced regions, cold filaments can mark surface-trapped layers insulated from deeper nutrient-rich waters, unlike in other regions, where they indicate upwelling of nutrient-rich water and enhanced surface biological productivity.
    Description: This work was carried out under the Office of Naval Research’s ASIRI (grants N000141612470 and N000141310451) in collaboration with the Indian Ministry of Earth Science’s OMM initiative supported by the Monsoon Mission
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-05-26
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 4 (2018): eaao1302, doi:10.1126/sciadv.aao1302.
    Description: Rising temperatures in the Arctic Ocean region are responsible for changes such as reduced ice cover, permafrost thawing, and increased river discharge, which, together, alter nutrient and carbon cycles over the vast Arctic continental shelf. We show that the concentration of radium-228, sourced to seawater through sediment-water exchange processes, has increased substantially in surface waters of the central Arctic Ocean over the past decade. A mass balance model for 228Ra suggests that this increase is due to an intensification of shelf-derived material inputs to the central basin, a source that would also carry elevated concentrations of dissolved organic carbon and nutrients. Therefore, we suggest that significant changes in the nutrient, carbon, and trace metal balances of the Arctic Ocean are underway, with the potential to affect biological productivity and species assemblages in Arctic surface waters.
    Description: This work was funded by NSF awards OCE-1458305 to M.A.C. and OCE-1458424 to W.S.M. The Mackenzie River sampling was supported by a Graduate Student Research Award from the North Pacific Research Board to L.E.K. L.E.K. also acknowledges support from a National Defense Science and Engineering Graduate Fellowship. I.G.R. acknowledges funding by the contributors to the U.S. Interagency Arctic Buoy Program, which include the U.S. Coast Guard, the Department of Energy, NASA, the U.S. Navy, the National Oceanic and Atmospheric Administration, and NSF.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 3 (2017): e1601426, doi:10.1126/sciadv.1601426.
    Description: Southern Ocean abyssal waters, in contact with the atmosphere at their formation sites around Antarctica, not only bring signals of a changing climate with them as they move around the globe but also contribute to that change through heat uptake and sea level rise. A repeat hydrographic line in the Indian sector of the Southern Ocean, occupied three times in the last two decades (1994, 2007, and, most recently, 2016), reveals that Antarctic Bottom Water (AABW) continues to become fresher (0.004 ± 0.001 kg/g decade−1), warmer (0.06° ± 0.01°C decade−1), and less dense (0.011 ± 0.002 kg/m3 decade−1). The most recent observations in the Australian-Antarctic Basin show a particularly striking acceleration in AABW freshening between 2007 and 2016 (0.008 ± 0.001 kg/g decade−1) compared to the 0.002 ± 0.001 kg/g decade−1 seen between 1994 and 2007. Freshening is, in part, responsible for an overall shift of the mean temperature-salinity curve toward lower densities. The marked freshening may be linked to an abrupt iceberg-glacier collision and calving event that occurred in 2010 on the George V/Adélie Land Coast, the main source region of bottom waters for the Australian-Antarctic Basin. Because AABW is a key component of the global overturning circulation, the persistent decrease in bottom water density and the associated increase in steric height that result from continued warming and freshening have important consequences beyond the Southern Indian Ocean.
    Description: The 2016 I08S cruise and the analysis and science performed at sea, as well as the individual principal investigators were funded through multiple National Oceanic and Atmospheric Administration (NOAA) and NSF grants including NSF grant OCE-1437015. The research for this article was mainly completed at sea. For land-based work, V.V.M. relied on her postdoctoral funding through NSF grant OCE-1435665, and A.M.M. was supported in part by NSF grant OCE-1356630 and NOAA grant NA11OAR4310063.
    Keywords: Salinity ; AABW ; Changes ; Water masses ; T-S properties ; Iceberg ; Calving ; Antartica ; Abyss ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 2 (2016): e1600445, doi:10.1126/sciadv.1600445.
    Description: Saharan mineral dust exported over the tropical North Atlantic is thought to have significant impacts on regional climate and ecosystems, but limited data exist documenting past changes in long-range dust transport. This data gap limits investigations of the role of Saharan dust in past climate change, in particular during the mid-Holocene, when climate models consistently underestimate the intensification of the West African monsoon documented by paleorecords. We present reconstructions of African dust deposition in sediments from the Bahamas and the tropical North Atlantic spanning the last 23,000 years. Both sites show early and mid-Holocene dust fluxes 40 to 50% lower than recent values and maximum dust fluxes during the deglaciation, demonstrating agreement with records from the northwest African margin. These quantitative estimates of trans-Atlantic dust transport offer important constraints on past changes in dust-related radiative and biogeochemical impacts. Using idealized climate model experiments to investigate the response to reductions in Saharan dust’s radiative forcing over the tropical North Atlantic, we find that small (0.15°C) dust-related increases in regional sea surface temperatures are sufficient to cause significant northward shifts in the Atlantic Intertropical Convergence Zone, increased precipitation in the western Sahel and Sahara, and reductions in easterly and northeasterly winds over dust source regions. Our results suggest that the amplifying feedback of dust on sea surface temperatures and regional climate may be significant and that accurate simulation of dust’s radiative effects is likely essential to improving model representations of past and future precipitation variations in North Africa.
    Description: This study was supported, in part, by NSF awards OCE-1030784 (to D.M. and P.B.d.) and OCE-09277247 (to P.B.d.); NASA grant NN14AP38G (to C. Heald, Massachusetts Institute of Technology), which supports D.A.R.; and the Columbia University Center for Climate and Life. A.F. is supported by the NSF grant AGS-1116885 and the National Oceanic and Atmospheric Administration (NOAA) grant NA14OAR4310277. S.H. is supported by the NASA Earth and Space Sciences Fellowship. We also acknowledge computational support from the NSF/NCAR Yellowstone Supercomputing Center and the Yale University High Performance Computing Center.
    Keywords: Mineral dust ; North Africa ; Paleoclimate ; African Humid Period
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-05-26
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 4 (2018): eaao4842, doi:10.1126/sciadv.aao4842.
    Description: In response to warming climate, methane can be released to Arctic Ocean sediment and waters from thawing subsea permafrost and decomposing methane hydrates. However, it is unknown whether methane derived from this sediment storehouse of frozen ancient carbon reaches the atmosphere. We quantified the fraction of methane derived from ancient sources in shelf waters of the U.S. Beaufort Sea, a region that has both permafrost and methane hydrates and is experiencing significant warming. Although the radiocarbon-methane analyses indicate that ancient carbon is being mobilized and emitted as methane into shelf bottom waters, surprisingly, we find that methane in surface waters is principally derived from modern-aged carbon. We report that at and beyond approximately the 30-m isobath, ancient sources that dominate in deep waters contribute, at most, 10 ± 3% of the surface water methane. These results suggest that even if there is a heightened liberation of ancient carbon–sourced methane as climate change proceeds, oceanic oxidation and dispersion processes can strongly limit its emission to the atmosphere.
    Description: The National Science Foundation (PLR-1417149; awarded to J.D.K.) primarily supported this work with additional support provided by the U.S. Department of Energy (DE-FE0028980; awarded to J.D.K.). Atmospheric 14C-CH4 measurements were funded by NASA via the Jet Propulsion Laboratory (Earth Ventures project “Carbon in Arctic Reservoirs Vulnerability Experiment”) to the University of Colorado under contract 1424124. K.M.S. acknowledges support from the University of Minnesota Grant-in-Aid program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Current Biology 27 (2017): 854–859, doi:10.1016/j.cub.2017.01.050.
    Description: Our visual system allows us to rapidly identify and intercept a moving object. When this object is far away, we base the trajectory on the target’s location relative to an external frame of reference [1]. This process forms the basis for the constant bearing angle (CBA) model, a reactive strategy that ensures interception since the bearing angle, formed between the line joining pursuer and target (called the range vector) and an external reference line, is held constant [2; 3 ; 4]. The CBA model may be a fundamental and widespread strategy, as it is also known to explain the interception trajectories of bats and fish [5 ; 6]. Here, we show that the aerial attack of the tiny robber fly Holcocephala fusca is consistent with the CBA model. In addition, Holcocephala fusca displays a novel proactive strategy, termed “lock-on” phase, embedded with the later part of the flight. We found the object detection threshold for this species to be 0.13°, enabled by an extremely specialized, forward pointing fovea (∼5 ommatidia wide, interommatidial angle Δφ = 0.28°, photoreceptor acceptance angle Δρ = 0.27°). This study furthers our understanding of the accurate performance that a miniature brain can achieve in highly demanding sensorimotor tasks and suggests the presence of equivalent mechanisms for target interception across a wide range of taxa.
    Description: This work was funded by the Air Force Office of Scientific Research (FA9550-15-1-0188 to P.T.G.-B. and K.N. and FA9550-15-1-0068 to D.G.S.), an Isaac Newton Trust/Wellcome Trust ISSF/University of Cambridge Joint Research Grant (097814/Z/11/Z) to P.T.G.-B., a Biotechnology and Biological Sciences Research Council David Phillips Fellowship (BBSRC, BB/L024667/1) to T.J.W., a Royal Society International Exchange Scheme grant to P.T.G.-B. (75166), a Swedish Research Council grant (2012-4740) to K.N., and a Shared Equipment Grant from the School of Biological Sciences (University of Cambridge, RG70368).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-05-26
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 4 (2018): e1701121, doi:10.1126/sciadv.1701121.
    Description: The 2012 submarine eruption of Havre volcano in the Kermadec arc, New Zealand, is the largest deep-ocean eruption in history and one of very few recorded submarine eruptions involving rhyolite magma. It was recognized from a gigantic 400-km2 pumice raft seen in satellite imagery, but the complexity of this event was concealed beneath the sea surface. Mapping, observations, and sampling by submersibles have provided an exceptionally high fidelity record of the seafloor products, which included lava sourced from 14 vents at water depths of 900 to 1220 m, and fragmental deposits including giant pumice clasts up to 9 m in diameter. Most (〉75%) of the total erupted volume was partitioned into the pumice raft and transported far from the volcano. The geological record on submarine volcanic edifices in volcanic arcs does not faithfully archive eruption size or magma production.
    Description: This research was funded by Australian Research Council Postdoctoral fellowships (DP110102196 and DE150101190 to R. Carey), a short-term postdoctoral fellowship grant from the Japan Society for the Promotion of Science (to R. Carey), National Science Foundation grants (OCE1357443 to B.H., OCE1357216 to S.A.S., and EAR1447559 to J.D.L.W.), and a New Zealand Marsden grant (U001616 to J.D.L.W.). J.D.L.W. and A.M. were supported by a research grant and PhD scholarship from the University of Otago. R.W. was supported by NIWA grant COPR1802. J.D.L.W. and F.C.-T. were supported by GNS Science grants CSA-GHZ and CSA-EEZ. M.J. was supported by the U.S. Department of Defense (DoD) through the National Defense Science and Engineering Graduate Fellowship (NDSEG) Program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-05-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Torres, J. P., Lin, Z., Watkins, M., Salcedo, P. F., Baskin, R. P., Elhabian, S., Safavi-Hemami, H., Taylor, D., Tun, J., Concepcion, G. P., Saguil, N., Yanagihara, A. A., Fang, Y., McArthur, J. R., Tae, H. S., Finol-Urdaneta, R. K., Özpolat, B. D., Olivera, B. M., & Schmidt, E. W. Small-molecule mimicry hunting strategy in the imperial cone snail, Conus imperialis. Science Advances, 7(11), (2021): eabf2704, https://doi.org/10.1126/sciadv.abf2704.
    Description: Venomous animals hunt using bioactive peptides, but relatively little is known about venom small molecules and the resulting complex hunting behaviors. Here, we explored the specialized metabolites from the venom of the worm-hunting cone snail, Conus imperialis. Using the model polychaete worm Platynereis dumerilii, we demonstrate that C. imperialis venom contains small molecules that mimic natural polychaete mating pheromones, evoking the mating phenotype in worms. The specialized metabolites from different cone snails are species-specific and structurally diverse, suggesting that the cones may adopt many different prey-hunting strategies enabled by small molecules. Predators sometimes attract prey using the prey’s own pheromones, in a strategy known as aggressive mimicry. Instead, C. imperialis uses metabolically stable mimics of those pheromones, indicating that, in biological mimicry, even the molecules themselves may be disguised, providing a twist on fake news in chemical ecology.
    Description: Research reported in this publication was supported by NIH R35GM12252, with contributions to biological work from NIH Fogarty International Center U19TW008163, NIH P01GM48677, and DOD CDMRP W81XWH-17-1-0413. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-05-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Guillermic, M., Cameron, L. P., De Corte, I., Misra, S., Bijma, J., de Beer, D., Reymond, C. E., Westphal, H., Ries, J. B., & Eagle, R. A. Thermal stress reduces pocilloporid coral resilience to ocean acidification by impairing control over calcifying fluid chemistry. Science Advances, 7(2), (2021): eaba9958, https://doi.org/10.1126/sciadv.aba9958.
    Description: The combination of thermal stress and ocean acidification (OA) can more negatively affect coral calcification than an individual stressors, but the mechanism behind this interaction is unknown. We used two independent methods (microelectrode and boron geochemistry) to measure calcifying fluid pH (pHcf) and carbonate chemistry of the corals Pocillopora damicornis and Stylophora pistillata grown under various temperature and pCO2 conditions. Although these approaches demonstrate that they record pHcf over different time scales, they reveal that both species can cope with OA under optimal temperatures (28°C) by elevating pHcf and aragonite saturation state (Ωcf) in support of calcification. At 31°C, neither species elevated these parameters as they did at 28°C and, likewise, could not maintain substantially positive calcification rates under any pH treatment. These results reveal a previously uncharacterized influence of temperature on coral pHcf regulation—the apparent mechanism behind the negative interaction between thermal stress and OA on coral calcification.
    Description: R.A.E. and J.B.R. acknowledge support from National Science Foundation grants OCE-1437166 and OCE-1437371. The work was also supported by the “Laboratoire d’Excellence” LabexMER (ANR-10-LABX-19), cofunded by a grant from the French government under the program “Investissements d’Avenir,” and an IAGC student grant 2017. R.A.E. acknowledges financial and logistical support from the Pritzker Endowment to UCLA IoES, and J.B.R. acknowledges support from the ZMT and the Hanse-Wissenschaftskolleg Fellowship Program and the NSF OCE award #1437371.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Law, K. L., Starr, N., Siegler, T. R., Jambeck, J. R., Mallos, N. J., & Leonard, G. H. The United States' contribution of plastic waste to land and ocean. Science Advances, 6(44), (2020): eabd0288, doi:10.1126/sciadv.abd0288.
    Description: Plastic waste affects environmental quality and ecosystem health. In 2010, an estimated 5 to 13 million metric tons (Mt) of plastic waste entered the ocean from both developing countries with insufficient solid waste infrastructure and high-income countries with very high waste generation. We demonstrate that, in 2016, the United States generated the largest amount of plastic waste of any country in the world (42.0 Mt). Between 0.14 and 0.41 Mt of this waste was illegally dumped in the United States, and 0.15 to 0.99 Mt was inadequately managed in countries that imported materials collected in the United States for recycling. Accounting for these contributions, the amount of plastic waste generated in the United States estimated to enter the coastal environment in 2016 was up to five times larger than that estimated for 2010, rendering the United States’ contribution among the highest in the world.
    Description: This work was funded by Ocean Conservancy through support from the Arthur Vining Davis Foundations.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2022-05-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Skinner, C., Mill, A. C., Fox, M. D., Newman, S. P., Zhu, Y., Kuhl, A., & Polunin, N. V. C. Offshore pelagic subsidies dominate carbon inputs to coral reef predators. Science Advances, 7(8), (2021): eabf3792, https://doi.org/10.1126/sciadv.abf3792.
    Description: Coral reefs were traditionally perceived as productive hot spots in oligotrophic waters. While modern evidence indicates that many coral reef food webs are heavily subsidized by planktonic production, the pathways through which this occurs remain unresolved. We used the analytical power of carbon isotope analysis of essential amino acids to distinguish between alternative carbon pathways supporting four key reef predators across an oceanic atoll. This technique separates benthic versus planktonic inputs, further identifying two distinct planktonic pathways (nearshore reef-associated plankton and offshore pelagic plankton), and revealing that these reef predators are overwhelmingly sustained by offshore pelagic sources rather than by reef sources (including reef-associated plankton). Notably, pelagic reliance did not vary between species or reef habitats, emphasizing that allochthonous energetic subsidies may have system-wide importance. These results help explain how coral reefs maintain exceptional productivity in apparently nutrient-poor tropical settings, but also emphasize their susceptibility to future ocean productivity fluctuations.
    Description: Sample analysis funding was provided by NERC LSMSF grant BRIS/102/0717 and BRIS/125/1418. C.S. was supported by a Newcastle University SAgE DTA studentship and a cooperative agreement with Banyan Tree.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Richter, M., Nebel, O., Maas, R., Mather, B., Nebel-Jacobsen, Y., Capitanio, F. A., Dick, H. J. B., & Cawood, P. A. An early cretaceous subduction-modified mantle underneath the ultraslow spreading Gakkel Ridge, Arctic Ocean. Science Advances, 6(44), (2020): eabb4340, doi:10.1126/sciadv.abb4340.
    Description: Earth’s upper mantle, as sampled by mid-ocean ridge basalts (MORBs) at oceanic spreading centers, has developed chemical and isotopic heterogeneity over billions of years through focused melt extraction and re-enrichment by recycled crustal components. Chemical and isotopic heterogeneity of MORB is dwarfed by the large compositional spectrum of lavas at convergent margins, identifying subduction zones as the major site for crustal recycling into and modification of the mantle. The fate of subduction-modified mantle and if this heterogeneity transmits into MORB chemistry remains elusive. Here, we investigate the origin of upper mantle chemical heterogeneity underneath the Western Gakkel Ridge region in the Arctic Ocean through MORB geochemistry and tectonic plate reconstruction. We find that seafloor lavas from the Western Gakkel Ridge region mirror geochemical signatures of an Early Cretaceous, paleo-subduction zone, and conclude that the upper mantle can preserve a long-lived, stationary geochemical memory of past geodynamic processes.
    Description: O.N. was supported by the Australian Research Council (grant FT140101062). P.A.C. was supported by the Australian Research Council (grant FL160100168). H.J.B.D. was supported by the NSF (grants PLR 9912162, PLR 0327591, OCE 0930487, and OCE 1434452). M.R. was supported by a graduate scholarship of Monash University and the SEAE.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).. The definitive version was published in Vuillemin, A., Wankel, S. D., Coskun, Ö. K., Magritsch, T., Vargas, S., Estes, E. R., Spivack, A. J., Smith, D. C., Pockalny, R., Murray, R. W., D'Hondt, S., & Orsi, W. D. Archaea dominate oxic subseafloor communities over multimillion-year time scales. Science Advances, 5(6), (2019): eaaw4108, doi: 10.1126/sciadv.aaw4108.
    Description: Ammonia-oxidizing archaea (AOA) dominate microbial communities throughout oxic subseafloor sediment deposited over millions of years in the North Atlantic Ocean. Rates of nitrification correlated with the abundance of these dominant AOA populations, whose metabolism is characterized by ammonia oxidation, mixotrophic utilization of organic nitrogen, deamination, and the energetically efficient chemolithoautotrophic hydroxypropionate/hydroxybutyrate carbon fixation cycle. These AOA thus have the potential to couple mixotrophic and chemolithoautotrophic metabolism via mixotrophic deamination of organic nitrogen, followed by oxidation of the regenerated ammonia for additional energy to fuel carbon fixation. This metabolic feature likely reduces energy loss and improves AOA fitness under energy-starved, oxic conditions, thereby allowing them to outcompete other taxa for millions of years.
    Description: This work was supported primarily by the Deutsche Forschungsgemeinschaft (DFG) project OR 417/1-1 granted to W.D.O. Preliminary work was supported by the Center for Dark Energy Biosphere Investigations project OCE-0939564 also granted to W.D.O. Publication of the manuscript was supported by the LMU Mentoring Program. The expedition was funded by the US National Science Foundation through grant NSF-OCE-1433150 to A.J.S, S.D., and R.P. R.W.M. led the expedition. This is a contribution of the Deep Carbon Observatory (DCO). S.D.W. acknowledges partial support from NASA Exobiology (NNX15AM04G). This is Center for Dark Energy Biosphere Investigations (C-DEBI) publication number 463. Portions of this material are based on work supported while R.W.M. was serving at the National Science Foundation. A portion of this work was performed as part of the LMU Masters Program “Geobiology and Paleobiology” (MGAP).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hirst, W. G., Kiefer, C., Abdosamadi, M. K., Schäffer, E., & Reber, S. In Vitro reconstitution and imaging of microtubule dynamics by fluorescence and label-free microscopy. STAR Protocols, 1(3), (2020): 100177, doi:10.1016/j.xpro.2020.100177.
    Description: Dynamic microtubules are essential for many processes in the lives of eukaryotic cells. To study and understand the mechanisms of microtubule dynamics and regulation, in vitro reconstitution with purified components has proven a vital approach. Imaging microtubule dynamics can be instructive for a given species, isoform composition, or biochemical modification. Here, we describe two methods that visualize microtubule dynamics at high speed and high contrast: (1) total internal reflection fluorescence microscopy and (2) label-free interference reflection microscopy.
    Description: We thank the AMBIO imaging facility (Charité, Berlin) and Nikon at MBL for imaging support. We thank all former and current members of the Reber lab for discussion and helpful advice, in particular Christoph Hentschel and Soma Zsoter for technical assistance. S.R. acknowledges funding by the IRI Life Sciences (Humboldt-Universität zu Berlin, Excellence Initiative/DFG). W.H. was supported by the Alliance Berlin Canberra co-funded by a grant from the Deutsche Forschungsgemeinschaft (DFG) for the International Research Training Group (IRTG) 2290 and the Australian National University. C.K. thanks the Deutsche Forschungsgesellschaft (DFG, JA 2589/1-1). C.K. and M.A. thank Steve Simmert and Tobias Jachowski former and current members of the Schäffer lab.
    Keywords: Biophysics ; Cell Biology ; Microscopy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geisterfer, Z. M., Oakey, J., & Gatlin, J. C. . Microfluidic encapsulation of Xenopus laevis cell-free extracts using hydrogel photolithography. STAR Protocols, 1(3), (2020): 100221, doi:10.1016/j.xpro.2020.100221.
    Description: Cell-free extract derived from the eggs of the African clawed frog Xenopus laevis is a well-established model system that has been used historically in bulk aliquots. Here, we describe a microfluidic approach for isolating discrete, biologically relevant volumes of cell-free extract, with more expansive and precise control of extract shape compared with extract-oil emulsions. This approach is useful for investigating the mechanics of intracellular processes affected by cell geometry or cytoplasmic volume, including organelle scaling and positioning mechanisms. For complete details on the use and execution of this protocol, please refer to Geisterfer et al. (2020).
    Description: This work was made possible by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant no. 2P20GM103432. It was also supported by additional funding provided by the NIGMS under grant no. R01GM113028, the NSF Faculty CAREER Program under award no. BBBE 1254608, Whitman Center fellowships at the Marine Biological Laboratory, and the Biomedical Scholars program of the Pew Charitable Trusts. We thank Drs. Aaron Groen and Tim Mitchison for their intellectual contributions and involvement in some of the pioneering experiments that set the foundation for this approach.
    Keywords: Biophysics ; Cell Biology ; Cell isolation ; Microscopy ; Model Organisms
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cell Reports 11 (2015): 1-12, doi:10.1016/j.celrep.2015.03.049.
    Description: Although recent research revealed an impact of westernization on diversity and composition of the human gut microbiota, the exact consequences on metacommunity characteristics are insufficiently understood, and the underlying ecological mechanisms have not been elucidated. Here, we have compared the fecal microbiota of adults from two non-industrialized regions in Papua New Guinea (PNG) with that of United States (US) residents. Papua New Guineans harbor communities with greater bacterial diversity, lower inter-individual variation, vastly different abundance profiles, and bacterial lineages undetectable in US residents. A quantification of the ecological processes that govern community assembly identified bacterial dispersal as the dominant process that shapes the microbiome in PNG but not in the US. These findings suggest that the microbiome alterations detected in industrialized societies might arise from modern lifestyle factors limiting bacterial dispersal, which has implications for human health and the development of strategies aimed to redress the impact of westernization.
    Description: This study was partly funded by BioGaia AB. BioGaia had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. A portion of this research is part of the Microbiomes in Transition Initiative at Pacific Northwest National Laboratory (PNNL). This research was conducted under the Laboratory Directed Research and Development Program at PNNL, a multi-program national laboratory operated by Battelle for the US Department of Energy under contract DE-AC05-76RL01830.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 4 (2018): eaap7567, doi:10.1126/sciadv.aap7567.
    Description: Very large eruptions (〉50 km3) and supereruptions (〉450 km3) reveal Earth’s capacity to produce and store enormous quantities (〉1000 km3) of crystal-poor, eruptible magma in the shallow crust. We explore the interplay between crustal evolution and volcanism during a volcanic flare-up in the Taupo Volcanic Zone (TVZ, New Zealand) using a combination of quartz-feldspar-melt equilibration pressures and time scales of quartz crystallization. Over the course of the flare-up, crystallization depths became progressively shallower, showing the gradual conditioning of the crust. Yet, quartz crystallization times were invariably very short (〈100 years), demonstrating that very large reservoirs of eruptible magma were transient crustal features. We conclude that the dynamic nature of the TVZ crust favored magma eruption over storage. Episodic tapping of eruptible magmas likely prevented a supereruption. Instead, multiple very large bodies of eruptible magma were assembled and erupted in decadal time scales.
    Description: This work was supported by the NSF (EAR-1151337) and by two Vanderbilt University Discovery Grants.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sadai, S., Condron, A., DeConto, R., & Pollard, D. Future climate response to Antarctic Ice Sheet melt caused by anthropogenic warming. Science Advances, 6(39), (2020): eaaz1169, doi:10.1126/sciadv.aaz1169.
    Description: Meltwater and ice discharge from a retreating Antarctic Ice Sheet could have important impacts on future global climate. Here, we report on multi-century (present–2250) climate simulations performed using a coupled numerical model integrated under future greenhouse-gas emission scenarios IPCC RCP4.5 and RCP8.5, with meltwater and ice discharge provided by a dynamic-thermodynamic ice sheet model. Accounting for Antarctic discharge raises subsurface ocean temperatures by 〉1°C at the ice margin relative to simulations ignoring discharge. In contrast, expanded sea ice and 2° to 10°C cooler surface air and surface ocean temperatures in the Southern Ocean delay the increase of projected global mean anthropogenic warming through 2250. In addition, the projected loss of Arctic winter sea ice and weakening of the Atlantic Meridional Overturning Circulation are delayed by several decades. Our results demonstrate a need to accurately account for meltwater input from ice sheets in order to make confident climate predictions.
    Description: This research was supported by the NSF Office of Polar Programs through NSF grant 1443347, the Biological and Environmental Research (BER) division of the U.S. Department of Energy through grant DE-SC0019263, the NSF through ICER 1664013, and by a grant to the NASA Sea Level Science Team 80NSSC17K0698.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 4 (2018): eaas8675, doi: 10.1126/sciadv.aas8675.
    Description: The upper mantle, as sampled by mid-ocean ridge basalts (MORBs), exhibits significant chemical variability unrelated to mechanisms of melt extraction at ridges. We show that barium isotope variations in global MORBs vary systematically with radiogenic isotopes and trace element ratios, which reflects mixing between depleted and enriched MORB melts. In addition, modern sediments and enriched MORBs share similar Ba isotope signatures. Using modeling, we show that addition of ~0.1% by weight of sediment components into the depleted mantle in subduction zones must impart a sedimentary Ba signature to the overlying mantle and induce low-degree melting that produces the enriched MORB reservoir. Subsequently, these enriched domains convect toward mid-ocean ridges and produce radiogenic isotope variation typical of enriched MORBs. This mechanism can explain the chemical and isotopic features of enriched MORBs and provide strong evidence for pervasive sediment recycling in the upper mantle.
    Description: This study was supported by NSF grants EAR-1119373 and EAR-1427310 to S.G.N.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 4 (2018): eaat1869, doi:10.1126/sciadv.aat1869.
    Description: Limiting climate warming to 〈2°C requires increased mitigation efforts, including land stewardship, whose potential in the United States is poorly understood. We quantified the potential of natural climate solutions (NCS)—21 conservation, restoration, and improved land management interventions on natural and agricultural lands—to increase carbon storage and avoid greenhouse gas emissions in the United States. We found a maximum potential of 1.2 (0.9 to 1.6) Pg CO2e year−1, the equivalent of 21% of current net annual emissions of the United States. At current carbon market prices (USD 10 per Mg CO2e), 299 Tg CO2e year−1 could be achieved. NCS would also provide air and water filtration, flood control, soil health, wildlife habitat, and climate resilience benefits.
    Description: This study was made possible by funding from the Doris Duke Charitable Foundation. C.A.W. and H.G. acknowledge financial support from NASA’s Carbon Monitoring System program (NNH14ZDA001N-CMS) under award NNX14AR39G. S.D.B. acknowledges support from the DOE’s Office of Biological and Environmental Research Program under the award DE-SC0014416. J.W.F. acknowledges financial support from the Florida Coastal Everglades Long-Term Ecological Research program under National Science Foundation grant no. DEB-1237517.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2022-05-25
    Description: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cell Reports 2 (2012): 242–248, doi:10.1016/j.celrep.2012.06.016.
    Description: Ion selectivity of metazoan voltage-gated Na+ channels is critical for neuronal signaling and has long been attributed to a ring of four conserved amino acids that constitute the ion selectivity filter (SF) at the channel pore. Yet, in addition to channels with a preference for Ca2+ ions, the expression and characterization of Na+ channel homologs from the sea anemone Nematostella vectensis, a member of the early-branching metazoan phylum Cnidaria, revealed a sodium-selective channel bearing a noncanonical SF. Mutagenesis and physiological assays suggest that pore elements additional to the SF determine the preference for Na+ in this channel. Phylogenetic analysis assigns the Nematostella Na+-selective channel to a channel group unique to Cnidaria, which diverged 〉540 million years ago from Ca2+-conducting Na+ channel homologs. The identification of Cnidarian Na+-selective ion channels distinct from the channels of bilaterian animals indicates that selectivity for Na+ in neuronal signaling emerged independently in these two animal lineages.
    Description: This study was supported by a research grant from the Austrian National Science Foundation (FWF P 21108-B17) to U.T., and by a United States-Israel Binational Agricultural Research and Development Grant (IS-4313-10) and an Israeli Science Foundation grant (107/08) to M.G.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 4 (2018): eaat6773, doi:10.1126/sciadv.aat6773.
    Description: Arctic Ocean measurements reveal a near doubling of ocean heat content relative to the freezing temperature in the Beaufort Gyre halocline over the past three decades (1987–2017). This warming is linked to anomalous solar heating of surface waters in the northern Chukchi Sea, a main entryway for halocline waters to join the interior Beaufort Gyre. Summer solar heat absorption by the surface waters has increased fivefold over the same time period, chiefly because of reduced sea ice coverage. It is shown that the solar heating, considered together with subduction rates of surface water in this region, is sufficient to account for the observed halocline warming. Heat absorption at the basin margins and its subsequent accumulation in the ocean interior, therefore, have consequences for Beaufort Gyre sea ice beyond the summer season.
    Description: Support was provided by the National Science Foundation Division of Polar Programs under award numbers 1303644, 1350046, and 1603660.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    American Association for the Advancement of Science
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Foukal, N. P., Gelderloos, R., & Pickart, R. S. A continuous pathway for fresh water along the East Greenland shelf. Science Advances, 6(43), (2020): eabc4254, doi:10.1126/sciadv.abc4254.
    Description: Export from the Arctic and meltwater from the Greenland Ice Sheet together form a southward-flowing coastal current along the East Greenland shelf. This current transports enough fresh water to substantially alter the large-scale circulation of the North Atlantic, yet the coastal current’s origin and fate are poorly known due to our lack of knowledge concerning its north-south connectivity. Here, we demonstrate how the current negotiates the complex topography of Denmark Strait using in situ data and output from an ocean circulation model. We determine that the coastal current north of the strait supplies half of the transport to the coastal current south of the strait, while the other half is sourced from offshore via the shelfbreak jet, with little input from the Greenland Ice Sheet. These results indicate that there is a continuous pathway for Arctic-sourced fresh water along the entire East Greenland shelf from Fram Strait to Cape Farewell.
    Description: Funding for this work comes from the NSF under grant numbers OCE-1756361 and OCE-1558742 (N.P.F. and R.S.P.) and grant numbers OCE-1756863 and OAC-1835640 (R.G.).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 3 (2017): e1700782, doi:10.1126/sciadv.1700782.
    Description: Plastics have outgrown most man-made materials and have long been under environmental scrutiny. However, robust global information, particularly about their end-of-life fate, is lacking. By identifying and synthesizing dispersed data on production, use, and end-of-life management of polymer resins, synthetic fibers, and additives, we present the first global analysis of all mass-produced plastics ever manufactured. We estimate that 8300 million metric tons (Mt) as of virgin plastics have been produced to date. As of 2015, approximately 6300 Mt of plastic waste had been generated, around 9% of which had been recycled, 12% was incinerated, and 79% was accumulated in landfills or the natural environment. If current production and waste management trends continue, roughly 12,000 Mt of plastic waste will be in landfills or in the natural environment by 2050.
    Description: R.G. was supported by the NSF Chemical, Bioengineering, Environmental and Transport Systems grant #1335478.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 3 (2017): e1701020, doi:10.1126/sciadv.1701020.
    Description: The rates of marine deoxygenation leading to Cretaceous Oceanic Anoxic Events are poorly recognized and constrained. If increases in primary productivity are the primary driver of these episodes, progressive oxygen loss from global waters should predate enhanced carbon burial in underlying sediments—the diagnostic Oceanic Anoxic Event relic. Thallium isotope analysis of organic-rich black shales from Demerara Rise across Oceanic Anoxic Event 2 reveals evidence of expanded sediment-water interface deoxygenation ~43 ± 11 thousand years before the globally recognized carbon cycle perturbation. This evidence for rapid oxygen loss leading to an extreme ancient climatic event has timely implications for the modern ocean, which is already experiencing large-scale deoxygenation.
    Description: We would like to acknowledge support from the NSF grant OCE 1434785 (to J.D.O. and S.G.N.), the NASA Exobiology grant NNX16AJ60G (to J.D.O. and S.G.N.), a WHOI Summer Student Fellowship (to C.M.O.), and an Agouron Postdoctoral Fellowship (to J.D.O.). This material is based on work supported by the NSF Graduate Research Fellowship Program under grant no. 026257-001.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in iScience 1 (2018): 24-34, doi:10.1016/j.isci.2018.01.001.
    Description: The color and pattern changing abilities of octopus, squid, and cuttlefish via chromatophore neuro-muscular organs are unparalleled. Cuttlefish and octopuses also have a unique muscular hydrostat system in their skin. When this system is expressed, dermal bumps called papillae disrupt body shape and imitate the fine texture of surrounding objects, yet the control system is unknown. Here we report for papillae: (1) the motoneurons and the neurotransmitters that control activation and relaxation, (2) a physiologically fast expression and retraction system, and (3) a complex of smooth and striated muscles that enables long-term expression of papillae through sustained tension in the absence of neural input. The neural circuits controlling acute shape-shifting skin papillae in cuttlefish show homology to the iridescence circuits in squids. The sustained tension in papillary muscles for long-term camouflage utilizes muscle heterogeneity and points toward the existence of a “catch-like” mechanism that would reduce the necessary energy expenditure.
    Description: This work was funded by an AFOSR grant no. FA9550-14-1-0134, Isaac Newton Trust/Wellcome Trust ISSF/University of Cambridge Joint Research Grant (097814/Z/11/Z) to P.T.G-B., and a Biotechnology and Biological Sciences Research Council David Phillips Fellowship (BBSRC, BB/L024667/1) to T.J.W.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cell Reports 25 (2018): 1281–1291, doi:10.1016/j.celrep.2018.10.005.
    Description: Morphogenesis and mechanoelectrical transduction of the hair cell mechanoreceptor depend on the correct assembly of Usher syndrome (USH) proteins into highly organized macromolecular complexes. Defects in these proteins lead to deafness and vestibular areflexia in USH patients. Mutations in a non-USH protein, glutaredoxin domain-containing cysteine-rich 1 (GRXCR1), cause non-syndromic sensorineural deafness. To understand the deglutathionylating enzyme function of GRXCR1 in deafness, we generated two grxcr1 zebrafish mutant alleles. We found that hair bundles are thinner in homozygous grxcr1 mutants, similar to the USH1 mutants ush1c (Harmonin) and ush1ga (Sans). In vitro assays showed that glutathionylation promotes the interaction between Ush1c and Ush1ga and that Grxcr1 regulates mechanoreceptor development by preventing physical interaction between these proteins without affecting the assembly of another USH1 protein complex, the Ush1c- Cadherin23-Myosin7aa tripartite complex. By elucidating the molecular mechanism through which Grxcr1 functions, we also identify a mechanism that dynamically regulates the formation of Usher protein complexes.
    Description: This work was supported by grants from the NIH (DC004186, OD011195, and HD22486).
    Keywords: Grxcr1 ; Usher syndrome ; Hair cell ; Stereocilia ; Glutathionylation ; Harmonin ; Sans
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    American Association for the Advancement of Science
    In:  EPIC3Science advances, American Association for the Advancement of Science, 7(44), pp. eabg9739
    Publication Date: 2021-12-05
    Description: Elemental carbon exists in different structural forms including graphite, diamond, fullerenes, and amorphous carbon. In nature, these materials are produced through abiotic chemical processes under high temperature and pressure but are considered generally inaccessible to biochemical synthesis or breakdown. Here, we identified and characterized elemental carbon isolated from consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB), which together carry out the anaerobic oxidation of methane (AOM). Two different AOM consortia, ANME-1a/HotSeep-1 and ANME-2a/c/Seep-SRB, produce a black material with similar characteristics to disordered graphite and amorphous carbon. Stable isotope probing studies revealed that the carbon is microbially generated during AOM. In addition, we found that select methanogens also produce amorphous carbon with similar characteristics to the carbon from AOM consortia. Biogenic amorphous carbon may serve as a conductive element to facilitate electron transfer, or redox active functional groups associated with the carbon could act as electron donors and acceptors.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2021-11-01
    Print ISSN: 0962-8924
    Electronic ISSN: 1879-3088
    Topics: Biology , Medicine
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2021-11-01
    Print ISSN: 0962-8924
    Electronic ISSN: 1879-3088
    Topics: Biology , Medicine
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2021-11-01
    Print ISSN: 0968-0004
    Electronic ISSN: 1362-4326
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2021-11-01
    Print ISSN: 0968-0004
    Electronic ISSN: 1362-4326
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2021-11-01
    Print ISSN: 0962-8924
    Electronic ISSN: 1879-3088
    Topics: Biology , Medicine
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2021-11-01
    Electronic ISSN: 2589-0042
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Natural Sciences in General , Physics
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
  • 68
    Publication Date: 2021-11-01
    Print ISSN: 0962-8924
    Electronic ISSN: 1879-3088
    Topics: Biology , Medicine
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2021-11-01
    Print ISSN: 0968-0004
    Electronic ISSN: 1362-4326
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2021-11-01
    Print ISSN: 0962-8924
    Electronic ISSN: 1879-3088
    Topics: Biology , Medicine
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2021-11-01
    Print ISSN: 0962-8924
    Electronic ISSN: 1879-3088
    Topics: Biology , Medicine
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2021-11-01
    Print ISSN: 0962-8924
    Electronic ISSN: 1879-3088
    Topics: Biology , Medicine
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2021-11-01
    Print ISSN: 0968-0004
    Electronic ISSN: 1362-4326
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2021-11-01
    Print ISSN: 0962-8924
    Electronic ISSN: 1879-3088
    Topics: Biology , Medicine
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2021-11-01
    Print ISSN: 0968-0004
    Electronic ISSN: 1362-4326
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2021-11-01
    Print ISSN: 0968-0004
    Electronic ISSN: 1362-4326
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2021-11-01
    Print ISSN: 0968-0004
    Electronic ISSN: 1362-4326
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2021-11-01
    Print ISSN: 0962-8924
    Electronic ISSN: 1879-3088
    Topics: Biology , Medicine
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2021-11-01
    Print ISSN: 0962-8924
    Electronic ISSN: 1879-3088
    Topics: Biology , Medicine
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2021-11-01
    Print ISSN: 0968-0004
    Electronic ISSN: 1362-4326
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
  • 82
    Publication Date: 2021-11-01
    Print ISSN: 0968-0004
    Electronic ISSN: 1362-4326
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2021-11-01
    Print ISSN: 0968-0004
    Electronic ISSN: 1362-4326
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2021-11-01
    Electronic ISSN: 2589-5974
    Topics: Chemistry and Pharmacology
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
  • 86
  • 87
  • 88
    Publication Date: 2021-11-01
    Electronic ISSN: 2589-5974
    Topics: Chemistry and Pharmacology
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2021-11-01
    Electronic ISSN: 2589-5974
    Topics: Chemistry and Pharmacology
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2021-11-01
    Electronic ISSN: 2589-5974
    Topics: Chemistry and Pharmacology
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2021-11-01
    Electronic ISSN: 2589-0042
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Natural Sciences in General , Physics
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2021-11-01
    Electronic ISSN: 2589-0042
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Natural Sciences in General , Physics
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2021-11-01
    Electronic ISSN: 2589-5974
    Topics: Chemistry and Pharmacology
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2021-11-01
    Electronic ISSN: 2589-5974
    Topics: Chemistry and Pharmacology
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2021-11-01
    Electronic ISSN: 2589-5974
    Topics: Chemistry and Pharmacology
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2021-11-01
    Electronic ISSN: 2589-0042
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Natural Sciences in General , Physics
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2021-11-01
    Electronic ISSN: 2589-5974
    Topics: Chemistry and Pharmacology
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2021-11-01
    Electronic ISSN: 2589-0042
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Natural Sciences in General , Physics
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2021-11-01
    Electronic ISSN: 2589-0042
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Natural Sciences in General , Physics
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2021-11-01
    Electronic ISSN: 2589-0042
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Natural Sciences in General , Physics
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...