ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas  (6)
  • Elsevier B.V.  (3)
  • Nature Publishing Group  (2)
  • Agu  (1)
Collection
Years
  • 1
    Publication Date: 2017-04-04
    Description: We explore physical mechanisms controlling formation of a confining conduit plug using 1D, steady-state numerical models of magma ascent. Model results for the welldocumented 1997 Vulcanian explosions at Soufrie`re Hills volcano were compared against subsurface conditions constrained by geophysical and petrologic analysis. We suggest that, if magma is permeable and overpressured and rock surrounding the conduit is permeable, degassing occurs both vertically and through conduit walls. This outgassing creates a region of low-vesicularity, dense magma near the surface (magma plug) which eventually seals the conduit and promotes system overpressure. Driving pressure increases with increasing magma flow rate, hindering volatile exsolution and shifting open-system degassing to shallower levels of the conduit. As a result, increasing magma flow rate for a fixed conduit width creates a vertically thinner plug and increases the magnitude and vertical extent of conduit overpressure. Plug thickness and density are also controlled by magma and edifice permeability
    Description: Published
    Description: L20302
    Description: JCR Journal
    Description: reserved
    Keywords: physical mechanisms ; magma ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Many volcanic edifices are subject to flank failure, usually produced by a combination of events, rather than any single process. From a dynamic point of view, the cause of collapse can be divided into factors that contribute to an increase in shear stress, and factors that contribute to the reduction in the friction coefficient μ of a potential basal failure plane. We study the potential for flank failure at Mount Etna considering a schematic section of the eastern flank, approximated by a wedge-like block. For such geometry, we perform a (steady state) limit equilibrium analysis: the resolution of the forces parallel to the possible basal failure plane allows us to determine the total force acting on the potentially unstable wedge. An estimate of the relative strength of these forces suggests that, in first approximation, the stability is controlled primarily by the balance between block weight, lithostatic load and magmatic forces. Any other force (sea load, hydrostatic uplift, and the uplift due to mechanical and thermal pore-fluid pressure) may be considered of second order. To study the model sensitivity, we let the inferred slope α of the basal surface failure vary between −10° and 10°, and consider three possible scenarios: no magma loading, magmastatic load, and magmastatic load with magma overpressure. We use error propagation to include in our analysis the uncertainties in the estimates of the mechanics and geometrical parameters controlling the block equilibrium. When there is no magma loading, the ratio between destabilizing and stabilizing forces is usually smaller than the coefficient of friction of the basal failure plane. In the absence of an initiating mechanism, and with the nominal values of the coefficient of friction μ=0.7±0.1 proposed, the representative wedge will remain stable or continue to move at constant speed. In presence of magmastatic forces, the influence of the lateral restraint decreases. If we consider the magmastatic load only, the block will remain stable (or continue to move at constant speed), unless the transient mechanical and thermal pressurization significantly decrease the friction coefficient, increasing the instability of the flank wedge for αN5° (seaward dipping decollement). When the magma overpressure contribution is included in the equilibrium analysis, the ratio between destabilizing and stabilizing forces is of the same order or larger than the coefficient of friction of the basal failure plane, and the block will become unstable (or accelerate), especially in the case of the reduction in friction coefficient. Finally, our work suggests that the major challenge in studying flank instability at Mount Etna is not the lack of an appropriate physical model, but the limited knowledge of the mechanical and geometrical parameters describing the block equilibrium.
    Description: This work was funded by Istituto Nazionale di Geofisica e Vulcanologia (INGV) and the Italian Dipartimento per la Protezione Civile (DPC) (DPC-INGV project V4 “Flank”).
    Description: In press
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; dike intrusion ; flank instability ; poro-elasticity ; analytical modelling ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: In this paper, we describe the 1809 eruption of Mt. Etna, Italy, which represents one historical rare case in which it is possible to observe details of the internal structure of the feeder system. This is possible thanks to the presence of two large pit craters located in the middle of the eruptive fracture field that allow studying a section of the shallow feeder system. Along the walls of one of these craters, we analysed well-exposed cross sections of the uppermost 15–20 m of the feeder system and related volcanic products. Here, we describe the structure, morphology and lithology of this portion of the 1809 feeder system, including the host rock which conditioned the propagation of the dyke, and compare the results with other recent eruptions. Finally, we propose the dynamic model of the magma behaviour inside a laterally-propagating feeder dyke, demonstrating how this dynamic triggered important changes in the eruptive style (from effusive/Strombolian to phreatomagmatic) during the same eruption. Our results are also useful for hazard assessment related to the development of flank eruptions, potentially the most hazardous type of eruption from basaltic volcanoes in densely urbanized areas, such as Mt. Etna.
    Description: Published
    Description: 1-11
    Description: 2T. Tettonica attiva
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: N/A or not JCR
    Description: open
    Keywords: feeder dyke ; basaltic volcanoes ; flank eruptions ; Etna ; volcanic hazards ; sill ; volcanic rift ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Many volcanic edifices are subject to flank failure, usually produced by a combination of events, rather than any single process. From a dynamic point of view, the cause of collapse can be divided into factors that contribute to an increase in shear stress, and factors that contribute to the reduction in the friction coefficient μ of a potential basal failure plane. We study the potential for flank failure at Mount Etna considering a schematic section of the eastern flank, approximated by a wedge-like block. For such geometry, we perform a (steady state) limit equilibrium analysis: the resolution of the forces parallel to the possible basal failure plane allows us to determine the total force acting on the potentially unstable wedge. An estimate of the relative strength of these forces suggests that, in first approximation, the stability is controlled primarily by the balance between block weight, lithostatic load and magmatic forces. Any other force (sea load, hydrostatic uplift, and the uplift due to mechanical and thermal pore-fluid pressure) may be considered of second order. To study the model sensitivity, we let the inferred slope α of the basal surface failure vary between −10° and 10°, and consider three possible scenarios: no magma loading, magmastatic load, and magmastatic load with magma overpressure. We use error propagation to include in our analysis the uncertainties in the estimates of the mechanics and geometrical parameters controlling the block equilibrium. When there is no magma loading, the ratio between destabilizing and stabilizing forces is usually smaller than the coefficient of friction of the basal failure plane. In the absence of an initiating mechanism, and with the nominal values of the coefficient of friction μ = 0.7 ± 0.1 proposed, the representative wedge will remain stable or continue to move at constant speed. In presence of magmastatic forces, the influence of the lateral restraint decreases. If we consider the magmastatic load only, the block will remain stable (or continue to move at constant speed), unless the transient mechanical and thermal pressurization significantly decrease the friction coefficient, increasing the instability of the flank wedge for α 〉 5° (seaward dipping decollement). When the magma overpressure contribution is included in the equilibrium analysis, the ratio between destabilizing and stabilizing forces is of the same order or larger than the coefficient of friction of the basal failure plane, and the block will become unstable (or accelerate), especially in the case of the reduction in friction coefficient. Finally, our work suggests that the major challenge in studying flank instability at Mount Etna is not the lack of an appropriate physical model, but the limited knowledge of the mechanical and geometrical parameters describing the block equilibrium.
    Description: This work was funded by Istituto Nazionale di Geofisica e Vulcanologia (INGV) and the Italian Dipartimento per la Protezione Civile (DPC) (DPC-INGV project V4 “Flank”).
    Description: Published
    Description: 153-164
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; dike intrusion ; flank instability ; poro-elasticity ; analytical modelling ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: In recent decades, geophysical investigations have detected wide magma reservoirs beneath quiescent calderas. However, the discovery of partially melted horizons inside the crust is not sufficient to put constraints on capability of reservoirs to supply cataclysmic eruptions, which strictly depends on the chemical-physical properties of magmas (composition, viscosity, gas content etc.), and thus on their differentiation histories. In this study, by using geochemical, isotopic and textural records of rocks erupted from the high-risk Campi Flegrei caldera, we show that the alkaline magmas have evolved toward a critical state of explosive behaviour over a time span shorter than the repose time of most volcanic systems and that these magmas have risen rapidly toward the surface. Moreover, similar results on the depth and timescale of magma storage were previously obtained for the neighbouring Somma-Vesuvius volcano. This consistency suggests that there might be a unique long-lived magma pool beneath the whole Neapolitan area.
    Description: Published
    Description: article 712
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: N/A or not JCR
    Description: open
    Keywords: magma ; campi flegrei caldera ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Morphologic data for 147 cinder cones in southernGuatemala andwestern El Salvador are comparedwith data from 21 the San Francisco volcanic field, Arizona (USA), Cima volcanic field, California (USA), Michoácan–Guanajuato 22 volcanic field, Mexico, and the Lamongan volcanic field, East Java. The Guatemala cones have an average height of 23 110+/−50m, an average basal diameter of 660+/−230m and an average top diameter of 180+/−150m. The 24 generalmorphology of these cones can be described by their average cone angle of slope (24+/−7), average height- 25 to-radius ratio (0.33+/−0.09) and their flatness (0.24+/−0.18). Although the mean values for the Guatemalan 26 cones are similar to those for other volcanic fields (e.g., San Francisco volcanic field, Arizona; Cima volcanic field, 27 California; Michoácan–Guanajuato volcanic field, Mexico; and Lamongan volcanic field, East Java), the range of 28 morphologies encompasses almost all of those observed worldwide for cinder cones. 29 Three new 40Ar/39Ar age dates are combined with 19 previously published dates for cones in Guatemala and El 30 Salvador. There is no indication that the morphologies of these cones have changed over the last 500–1000 ka. 31 Furthermore, a re-analysis of published data for other volcanic fields suggests that only in the Cima volcanic field (of 32 those studied) is there clear evidence of degradation with age. 33 Preliminary results of a numerical model of cinder cone growth are used to show that the range of morphologies 34 observed in the Guatemalan cinder cones could all be primary, that is, due to processes occurring at the time of 35 eruption.
    Description: Support for Walker was provided by NSF MARGINS grant OCE-0405666.
    Description: In press
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: cinder cones ; morphology ; age dating ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...