ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous  (8)
  • 04.06. Seismology  (7)
  • Elsevier B.V.  (12)
  • AGU- American Geophysical Union
  • American Chemical Society
  • Blackwell Publishing Ltd
Collection
Years
  • 1
    facet.materialart.
    Unknown
    Elsevier B.V.
    Publication Date: 2021-02-01
    Description: In supervised classification, we search criteria allowing us to decide whether a sample belongs to a certain class of patterns. The identification of such decision functions is based on examples where we know a priori to which class they belong. The distinction of seismic signals, produced from earthquakes and nuclear explosions, is a classical problem of discrimination using classification with supervision. We move on from observed data—signals originating from known earthquakes and nuclear tests—and search for criteria on how to assign a class to a signal of unknown origin. We begin with Principal Component Analysis (PCA) and Fisher's Linear Discriminant Analysis (FLDA), identifying a linear element separating groups at best. PCA, FLDA, and likelihood-based approaches make use of statistical properties of the groups. Considering only the number of misclassified samples as a cost, we may prefer alternatives, such as the Multilayer Perceptrons (MLPs). The Support Vector Machines (SVMs) use a modified cost function, combining the criterion of the minimum number of misclassified samples with a request of separating the hulls of the groups with a margin as wide as possible. Both SVMs and MLPs overcome the limits of linear discrimination. A famous example for the advantages of the two techniques is the eXclusive OR (XOR) problem, where we wish to form classes of objects having the same parity—even, e.g., (0,0), (1,1) or odd, e.g., (0,1), (1,0). MLPs and SVMs offer effective methods for the identification of nonlinear decision functions, allowing us to resolve classification problems of any complexity provided the data set used during earning is sufficiently large. In Hidden Markov Models (HMMs), we consider observations where their meaning depends on their context. Observations form a causal chain generated by a hidden process. In Bayesian Networks (BNs) we represent conditional (in)dependencies between a set of random variables by a graphical model. In both HMMs and BNs, we aim at identifying models and parameters that explain observations with a highest possible degree of probability.
    Description: Published
    Description: 33-85
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Keywords: pattern recognition ; supervised learning ; Support Vector Machines ; Multilayer Perceptrons ; Hidden Markov Models ; Bayesian Networks ; 04.04. Geology ; 04.06. Seismology ; 04.07. Tectonophysics ; 04.08. Volcanology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-01
    Description: Patterns and objects are described by a variety of characteristics, namely features and feature vectors. Features can be numerical, ordinal, and categorical. Patterns can be made up of a number of objects, such as in speech processing. In geophysics, numerical features are the most common ones and we focus on those. The choice of appropriate features requires a priori reasoning about the physical relation between patterns and features. We present strategies for feature identification and procedures suitable for pattern recognition. In time series analysis and image processing, the direct use of raw data is not feasible. Procedures of feature extraction, based on locally encountered characteristics of the data, are applied. Here we present the problem of delineating segments of interest in time series and textures in image processing. In transformations, we “translate” our raw data to a form suitable for learning. In Principal Component Analysis, we rotate the original features to a system of uncorrelated variables, limiting redundancy. Independent Component Analysis follows a similar strategy, transforming our data into variables independent of each other. Fourier transform and wavelet transform are based on the representation of the original data as a series of basis functions—sines and cosines or finite-length wavelets. Redundancy reduction is achieved considering the contributions of the single basis functions. Even though a large number of features help to solve a classification problem, feature vectors with high dimensions pose severe problems. Besides the computational burden, we encounter problems known under the term “curse of dimensionality.” The curse of dimensionality entails the necessity of feature selection and reduction, which includes a priori considerations as well as redundancy reduction. The significance of features may be evaluated with tests, such as Student’s t or Hotelling's T2, and, in more complex problems, with cross-validation methods.
    Description: Published
    Description: 3-13
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Keywords: pattern recognition ; objects ; features ; 04.04. Geology ; 04.06. Seismology ; 04.07. Tectonophysics ; 04.08. Volcanology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-18
    Description: Morphologic data for 147 cinder cones in southern Guatemala andwestern El Salvador are comparedwith data from the San Francisco volcanic field, Arizona (USA), Cima volcanic field, California (USA), Michoácan–Guanajuato volcanic field, Mexico, and the Lamongan volcanic field, East Java. The Guatemala cones have an average height of 110+/-50 m, an average basal diameter of 660+/-230 m and an average top diameter of 180+/-150 m. The generalmorphology of these cones can be described by their average cone angle of slope (24+/-7), average heightto- radius ratio (0.33+/-0.09) and their flatness (0.24+/-0.18). Although the mean values for the Guatemalan cones are similar to those for other volcanic fields (e.g., San Francisco volcanic field, Arizona; Cima volcanic field, California; Michoácan–Guanajuato volcanic field, Mexico; and Lamongan volcanic field, East Java), the range of morphologies encompasses almost all of those observed worldwide for cinder cones. Three new 40Ar/39Ar age dates are combined with 19 previously published dates for cones in Guatemala and El Salvador. There is no indication that the morphologies of these cones have changed over the last 500–1000 ka. Furthermore, a re-analysis of published data for other volcanic fields suggests that only in the Cima volcanic field (of those studied) is there clear evidence of degradation with age. Preliminary results of a numerical model of cinder cone growth are used to show that the range of morphologies observed in the Guatemalan cinder cones could all be primary, that is, due to processes occurring at the time of eruption.
    Description: Support for Walker was provided by NSF MARGINS grant OCE- 0405666.
    Description: Published
    Description: 39-52
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: open
    Keywords: cinder cones ; morphology ; age dating ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-01
    Description: In this chapter, we deal with a posterior analysis of supervised and unsupervised learning techniques. Concerning supervised learning, we discuss methods of cross-validation and assessment of uncertainty of tests by means of the “Receiver Operation Curve” and the “Kappa-Statistics.” We show the importance of appropriate target information. Furthermore, features are critical; when they are not properly chosen, they fail to describe objects in a unique way. A critical attitude is mandatory to validate the success of an application. A high score of success does not automatically mean that a method is truly effective. At the same time, users should not despair when the desired success is not achieved. A posteriori analysis on the reasons for an apparent failure may provide useful insights into the problem. Targets may not be appropriately defined, features can be inadequate, etc. Problems can be often fixed by adjusting a few choices; sometimes a change of strategy may be necessary to improve results. In unsupervised learning, we ask whether the structures revealed in the data are meaningful. Cluster analysis offers rules giving formal answers to this question; however, such rules are not generally applicable. In some cases, a heuristic approach may be necessary.
    Description: Published
    Description: 237-259
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Keywords: pattern recognition ; a posteriori analysis ; supervised learning ; unsupervised learning ; cross validation ; assessment of uncertainty ; Receiver Operation Curve ; Kappa-Statistics ; 04.04. Geology ; 04.06. Seismology ; 04.07. Tectonophysics ; 04.08. Volcanology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Elsevier B.V.
    Publication Date: 2021-02-01
    Description: Unsupervised learning is based on the definition of an appropriate metrics defining the similarity of patterns. On the basis of the metrics, we form groups or clusters of patterns following various strategies. In partitioning cluster analysis, we form disjoint clusters. Being faced with data, where clusters still exhibit heterogeneities or subclusters, we may adopt the strategy of hierarchical clustering, which leads to the generation of the so-called dendrograms. In the partitioning strategy, we choose a priori the number of clusters we wish to form, whereas in the hierarchical strategy, the number of clusters depends on the resolution we want to have. Density-based clustering considers local structures of a data set. We consider a unit volume in our data space and derive the density of samples within this volume. Moving toward neighboring volumes, we verify whether the number of samples has dropped below a threshold. If this is the case, we identify a heterogeneity, otherwise we join the neighboring volumes to a common cluster. Self-Organizing Maps (SOMs) provide a way of representing multidimensional data in much lower dimensional spaces than the original data set. The process of reducing the dimensionality of vectors is essentially a data compression technique known as vector quantization. The SOM technique creates a network that stores information in a way that it maintains the topological relationships within the patterns of the data set. Each node of the network represents a number of patterns. Assigning a color code to the nodes, the representation of pattern characteristics with high-dimensional feature vectors becomes extremely effective.
    Description: Published
    Description: 87-124
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Keywords: pattern recognition ; unsupervised learning ; cluster analysis ; Density-based clustering ; Self-Organizing Maps ; 04.04. Geology ; 04.06. Seismology ; 04.07. Tectonophysics ; 04.08. Volcanology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-01
    Description: This chapter demonstrates how Unsupervised Learning can be applied in Geophysics. It starts with an example of clustering seismic spectra obtained on Stromboli volcano. K-means clustering as well as clustering using the Adaptive Criterion are applied. The latter criterion is preferred as it better matches the statistical characteristics of the data. Clusters show close relation to the state of volcanic activity. Density based clustering reveals groups whose hulls can be of irregular shape. This makes the method attractive, among others, for the identification of structural elements in geology, which often do not have a simple geometry. An example application is discussed considering the distribution of earthquake locations on Mt Etna, which clearly evidence structures already identified by other, independent evidences. Using SOM we aim at data reduction and effective graphical visualization. In an example for climate data we demonstrate the application of SOM for zoning purposes. Besides, the temporal evolution of spectral seismic data recorded on Mt Etna can be effectively monitored using SOM. We further illustrate the use of SOM for directional data, which can be handled best using a toroidal sheet geometry. We discuss this using a data set of seismic moment tensors of Mediterranean earthquakes.
    Description: Published
    Description: 189-234
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Keywords: pattern recognition ; unsupervised learning ; Density based clustering ; Stromboli ; earthquakes ; volcanic activity ; structural data ; seismic moment tensors ; 04.04. Geology ; 04.06. Seismology ; 04.07. Tectonophysics ; 04.08. Volcanology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Elsevier B.V.
    Publication Date: 2021-02-01
    Description: In this chapter, we present scripts and programs that accompany this book. Five MATLAB scripts regard simple examples related to supervised learning, that is, linear discrimination, the perceptron, support vector machines, and hidden Markov models. Seven scripts are devoted to unsupervised learning, such as K-means and fuzzy clustering, agglomerative clustering, density-based clustering, and clustering of patterns where features are correlated. These scripts provide a starting point for the reader, who can adjust and modify the codes with respect to proper needs. Besides, we provide sources and executables of programs that can be readily applied to larger and more complex datasets. These programs regard supervised learning using multilayerperceptron and support vector machines. KKAnalysis is a toolbox for unsupervised learning and offers various options of clustering and the use of self-organizing maps. The programs offer graphical user interfaces (GUI) to facilitate their use and create both graphical and alphanumeric output that can be used in further processing steps. The programs come along with real-world datasets that are also discussed in the example applications presented in various chapters of the book. Other propaedeutic material can be found in a folder called “miscellaneous.”
    Description: Published
    Description: 261-313
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Keywords: pattern recognition ; software manuals ; MATLAB scripts ; 04.04. Geology ; 04.06. Seismology ; 04.07. Tectonophysics ; 04.08. Volcanology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-02-15
    Description: This chapter presents applications of supervised learning in various geophysical disciplines, being them seismology, geodesy, magnetism, and others. For all examples, we provide a brief introduction to the geophysical background. Practical aspects, such as normalization issues and feature selection, are discussed. A posteriori considerations shed light on the geophysical problem, such as the importance of model parameters in regression, the possible nonuniqueness in inversion, and flaws in the definition of targets. We demonstrate multilayer perceptrons (MLPs) as classifiers of seismic waveforms. Besides, we show how the use of MLP is straightforward in the context of inversion of various kinds of data, for example, seismic, geodetic, and magnetic. Regression with MLP is applied to magnetotelluric and seismic data. Multiclass classification with support vector machine (SVM) is discussed for infrasound waveforms and volcanic rocks using geochemical characteristics. We introduce the use of SVM in the context of regression, which is formally less immediate than for MLP, but yields good results. An example deals with empirical ground motion estimation during earthquakes. In hidden Markov models and Bayesian networks one considers the interrelation between observations rather than single patterns. We show their benefits in various applications, from seismic waveform classification aimed at the forecast of volcanic unrest up to their use in tsunami early-warning systems.
    Description: Published
    Description: 127-187
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Keywords: pattern recognition ; supervised learning ; multilayer perceptrons ; seismic data ; magnetotelluric data ; infrasound waveforms ; volcanic rocks ; geochemical characteristics ; 04.04. Geology ; 04.06. Seismology ; 04.07. Tectonophysics ; 04.08. Volcanology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU- American Geophysical Union
    Publication Date: 2017-04-04
    Description: The oil- and gas-rich West Siberian Basin is underlain by a layer of flood basalts of late Permian-Triassic age that are coeval with the Siberian traps. The extent and thickness of the basalts is unknown, but knowing their thickness is important for discussions on the end- Permian mass extinction because basalt volume constrains estimates of emitted volatiles. We have used GRACE satellite and terrestrial gravity data to study the structure of the crust and basalt distribution. Published seismic sections are used to constrain the sediment isopachs and to estimate a depth-density function. We use published models of crustal thickness and basement depth to reduce the observed gravity field to the basement level. The resulting 3D density model gives information on density anomalies in the lower crust and upper mantle and on the basalt thickness. We identify several rift-graben structures which are presumably filled with basalt. The lower crust below the West Siberian Basin shows considerable density variations and these variations allow the region to be divided into four major blocks. The eastern part of the basin, towards the Siberian platform, shows an arch-shaped density increase in the lower crust that is accompanied by a linear high-density anomaly at shallower depths. Our work demonstrates the way in which the GRACE-gravity field can be applied to map geological structures like buried rifts and large basins. The same techniques can be used for other large, remote basins such as those in cratonic South America.
    Description: In press
    Description: 12-20
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: open
    Keywords: West Siberian Basin ; End Perm basalts ; GRACE ; Gravity ; Isostasy ; Oil Maturation ; Flood basalt ; Plume magmatism ; Mass extinction ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: EMSO has been identified by the ESFRI Report 2006 as one of the Research Infrastructures that European members and associated states are asked to develop in the next decades. It will be based on a European-scale network of multidisciplinary seafloor observatories from the Arctic to the Black Sea with the aim of long-term real-time monitoring of processes related to geosphere/biosphere/hydrosphere interactions. EMSO will enhance our understanding of processes, providing long time series data for the different phenomenon scales which constitute the new frontier for study of Earth interior, deep-sea biology and chemistry, and ocean processes. The development of an underwater network is based on past EU projects and is supported by several EU initiatives, such as the on-going ESONET-NoE, aimed at strengthening the ocean observatories’ scientific and technological community. The EMSO development relies on the synergy between the scientific community and industry to improve European competitiveness with respect to countries such as USA, Canada and Japan. Within the FP7 Programme launched in 2006, a call for Preparatory Phase (PP) was issued in order to support the foundation of the legal and organisational entity in charge of building up and managing the infrastructure, and coordinating the financial effort among the countries. The EMSO-PP project, coordinated by the Italian INGV with participation by 11 institutions from as many European countries, started in April 2008 and will last four years.
    Description: Published
    Description: 21-27
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: JCR Journal
    Description: reserved
    Keywords: Marine science and technology ; Multidisciplinary seafloor monitoring ; Permanent underwater network ; European research infrastructures ; 03. Hydrosphere::03.04. Chemical and biological::03.04.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: In eastern Elba Island (Tuscany, Italy), a shallow crustal level felsic, tourmaline-bearing, dyke-sill swarm of Late Miocene age is associated with abundant tourmaline-quartz hydrothermal veins and metasomatic masses. Development of these veins and masses in the host rocks demonstrates multiple hydro-fracturing by magmatic, boron-rich saline fluid. Tourmalines in felsic dykes are schorl, whereas in veins and metasomatic masses, tourmaline composition ranges from schorl-dravite through dravite to uvite. This compositional shift is evidence for an increasing contribution to the magmatic boron-rich fluids by a Mg-Ca-Ti-rich external component represented by biotite-rich and amphibolite host rocks. This system can be envisaged as an exposed proxy of the high temperature hydrothermal system presently active in the deepest part of the Larderello-Travale geothermal field (Tuscany).
    Description: Published
    Description: 318-326
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: JCR Journal
    Description: reserved
    Keywords: Hydro-fractures ; geothermal systems ; Magmatism ; southern Tuscany ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: On 27 February 2007, two NE–SW and NNW–SSE dike-fed effusive vents opened to the North (at 650 and 400 m above sea level, asl) of the summit craters at Stromboli, forming a fissure parallel to the inner walls of the Sciara del Fuoco (SdF) sector collapse depression. The formation of these vents was soon followed by rapid subsidence of the summit crater area. This partly obstructed the central conduit, temporarily choking the fissure and increasing the deformation of the upper part of SdF. The reactivation of the NNW–SSE vent and the opening of a new vent located at 500 m asl, fed by a second dike, released the internal pressure and surface deformation ceased. The eruption then continued again from the 400 m vent, after a summit explosion on 15 March, until ending in early April after a progressive decrease of magma output. Repeated NE–SW dike intrusions have occurred in recent years, close to the upper SE limit of the SdF. In that zone, named Bastimento, the eruptive fractures traced the discontinuities that borders the SdF, increasing the risk of triggering new sector collapse. Whereas the NE–SW trending structures lie along the regional volcanostructural trend of the Aeolian arc through Stromboli, the NNW–SSE vents are oblique to this trend and may be controlled by the anomalous stress field within the unstable flank of the SdF. Another fundamental aspect of the 2007 eruption is the collapse of the central conduit, due to the rapid and deep magma drainage linked to the opening of the 400 m vent. The intrusion of dikes and development of flank vents during the 2007 eruption could possibly have triggered catastrophic landslides and related tsunami or eruptive paroxysms, but the opening of new effusive vents released the internal pressures, diminishing the hazard.
    Description: Work funded by INGV and Dipartimento Protezione Civile, Italy.
    Description: Published
    Description: 137-144
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: 2007 Stromboli eruption ; Dike-Fed vent ; Volcano-Tectonics ; Conduit collapse ; Flank instability ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcs ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: Time series clustering is an important task in data analysis issues in order to extract implicit, previously unknown, and potentially useful information froma large collection of data. Finding useful similar trends inmultivariate time series represents a challenge in several areas including geophysics environment research. While traditional time series analysis methods deal only with univariate time series, multivariate time series analysis is a more suitable approach in the field of researchwhere different kinds of data are available. Moreover, the conventional time series clustering techniques do not provide desired results for geophysical datasets due to the huge amount of data whose sampling rate is different according to the nature of signal. In this paper, a novel approach concerning geophysical multivariate time series clustering is proposed using dynamic time series segmentation and Self Organizing Maps techniques. This method allows finding coupling among trends of different geophysical data recorded from monitoring networks at Mt. Etna spanning from 1996 to 2003, when the transition from summit eruptions to flank eruptions occurred. This information can be used to carry out a more careful evaluation of the state of volcano and to define potential hazard assessment at Mt. Etna.
    Description: Thisworkwas partially funded by INGV and the DPC-INGV project “Flank”.
    Description: Published
    Description: 65-74
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: data mining ; features extraction ; time series clustering ; self organizing maps ; Etna ; summit and flank eruptions ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: Many volcanic edifices are subject to flank failure, usually produced by a combination of events, rather than any single process. From a dynamic point of view, the cause of collapse can be divided into factors that contribute to an increase in shear stress, and factors that contribute to the reduction in the friction coefficient μ of a potential basal failure plane. We study the potential for flank failure at Mount Etna considering a schematic section of the eastern flank, approximated by a wedge-like block. For such geometry, we perform a (steady state) limit equilibrium analysis: the resolution of the forces parallel to the possible basal failure plane allows us to determine the total force acting on the potentially unstable wedge. An estimate of the relative strength of these forces suggests that, in first approximation, the stability is controlled primarily by the balance between block weight, lithostatic load and magmatic forces. Any other force (sea load, hydrostatic uplift, and the uplift due to mechanical and thermal pore-fluid pressure) may be considered of second order. To study the model sensitivity, we let the inferred slope α of the basal surface failure vary between −10° and 10°, and consider three possible scenarios: no magma loading, magmastatic load, and magmastatic load with magma overpressure. We use error propagation to include in our analysis the uncertainties in the estimates of the mechanics and geometrical parameters controlling the block equilibrium. When there is no magma loading, the ratio between destabilizing and stabilizing forces is usually smaller than the coefficient of friction of the basal failure plane. In the absence of an initiating mechanism, and with the nominal values of the coefficient of friction μ = 0.7 ± 0.1 proposed, the representative wedge will remain stable or continue to move at constant speed. In presence of magmastatic forces, the influence of the lateral restraint decreases. If we consider the magmastatic load only, the block will remain stable (or continue to move at constant speed), unless the transient mechanical and thermal pressurization significantly decrease the friction coefficient, increasing the instability of the flank wedge for α 〉 5° (seaward dipping decollement). When the magma overpressure contribution is included in the equilibrium analysis, the ratio between destabilizing and stabilizing forces is of the same order or larger than the coefficient of friction of the basal failure plane, and the block will become unstable (or accelerate), especially in the case of the reduction in friction coefficient. Finally, our work suggests that the major challenge in studying flank instability at Mount Etna is not the lack of an appropriate physical model, but the limited knowledge of the mechanical and geometrical parameters describing the block equilibrium.
    Description: This work was funded by Istituto Nazionale di Geofisica e Vulcanologia (INGV) and the Italian Dipartimento per la Protezione Civile (DPC) (DPC-INGV project V4 “Flank”).
    Description: Published
    Description: 153-164
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; dike intrusion ; flank instability ; poro-elasticity ; analytical modelling ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Blackwell Publishing Ltd
    Publication Date: 2017-04-04
    Description: We present a new crustal model for the European plate, derived from collection and critical integration of information selected from the literature. The model covers the whole European plate from North Africa to the North Pole (20N - 90N) and from the Mid-Atlantic Ridge to the Urals (40W - 70E). The chosen parameterization represents the crust in three layers (sediments, upper crust and lower crust), and describes the 3D geometry of the interfaces and seismologically-relevant parameters — isotropic P- and S-wave velocity, plus density — with a resolution of 0.5 × 0.5 degrees on a geographical latitude-longitude grid. We selected global and local models, derived from geological assumptions, active seismic experiments, surface-wave studies, noise correlation, receiver functions. Model EPcrust presents significant advantages with respect to previous models: it covers the whole European plate; it is a complete and internally-consistent model (with all the parameters provided, also for the sedimentary layer); it is reproducible; it is easy to update in the future by adding new contributions; and it is available in a convenient digital format. EPcrust could be used to account for crustal structure in seismic wave propagation modeling at continental scale or to compute linearized crustal corrections in continental-scale seismic tomography, gravity studies, dynamic topography and other applications that require a reliable crustal structure. Because of its resolution, our model is not suited for local-scale studies, such as the computation of earthquake scenarios, where more detailed knowledge of the structure is required. We plan to update the model as new data will become available, and possibly improve its resolution for selected areas in the future.
    Description: Published
    Description: 352-364
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Europe ; crust ; crustal properties ; Moho ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.01. Composition and state
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...