ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
  • AGU  (5)
  • American Institute of Physics
Collection
Years
  • 1
    Publication Date: 2020-12-14
    Description: Magmas in volcanic conduits commonly contain microlites in association with preexisting phenocrysts, as often indicated by volcanic rock textures. In this study, we present two different experiments that investigate the flow behavior of these bidisperse systems. In the first experiments, rotational rheometric methods are used to determine the rheology of monodisperse and polydisperse suspensions consisting of smaller, prolate particles (microlites) and larger, equant particles (phenocrysts) in a bubble‐free Newtonian liquid (silicate melt). Our data show that increasing the relative proportion of prolate microlites to equant phenocrysts in a magma at constant total particle content can increase the relative viscosity by up to three orders of magnitude. Consequently, the rheological effect of particles in magmas cannot be modeled by assuming a monodisperse population of particles. We propose a new model that uses interpolated parameters based on the relative proportions of small and large particles and produces a considerably improved fit to the data than earlier models. In a second series of experiments we investigate the textures produced by shearing bimodal suspensions in gradually solidifying epoxy resin in a concentric cylinder setup. The resulting textures show the prolate particles are aligned with the flow lines and spherical particles are found in well‐organized strings, with sphere‐depleted shear bands in high‐shear regions. These observations may explain the measured variation in the shear thinning and yield stress behavior with increasing solid fraction and particle aspect ratio. The implications for magma flow are discussed, and rheological results and textural observations are compared with observations on natural samples.
    Description: Published
    Description: Q07024
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: restricted
    Keywords: analog experiments ; crystal bearing ; polydisperse suspensions ; rheology ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We present a new modeling tool, named VOL-CALPUFF, that is able to simulate the transient and three-dimensional transport and deposition of volcanic ash under the action of realistic meteorological and volcanological conditions throughout eruption duration. The new model derives from the CALPUFF System, a software program widely used in environmental applications of pollutant dispersion, that describes the dispersal process in both the proximal and distal regions and also in the presence of complex orography. The main novel feature of the model is its capability of coupling a Eulerian description of plume rise with a Lagrangian representation of ash dispersal described as a series of diffusing packets of particles or puffs. The model is also able to describe the multiparticle nature of the mixture as well as the tilting effects of the plume due to wind action. The dispersal dynamics and ash deposition are described by using refined orography-corrected meteorological data with a spatial resolution up to 1 km or less and a temporal step of 1 h. The modeling approach also keeps the execution time to a few minutes on common PCs, thus making VOL-CALPUFF a possible tool for the production of ash dispersal forecasts for hazard assessment. Besides the model formulation, this paper presents the type of outcomes produced by VOL-CALPUFF, shows the effect of main model parameters on results, and also anticipates the fundamental control of atmospheric conditions on the ash dispersal processes. In the companion paper, Barsotti and Neri present a first thorough application of VOL-CALPUFF to the simulation of a weak plume at Mount Etna (Italy) with the specific aim of comparing model predictions with independent observations.
    Description: Published
    Description: B03208
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: volcanic plume ; ash dispersal ; numerical modelling ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Directed volcanic blasts are powerful explosions with a significant laterally directed component, which can generate devastating, high-energy pyroclastic density currents (PDCs). Such blasts are an important class of eruptive phenomena, but quantified understanding of their dynamics and effects is still incomplete. Here we use 2-D and 3-D multiparticle thermofluid dynamic flow codes to examine a powerful volcanic blast that occurred on Montserrat in December 1997. On the basis of the simulations, we divide the blast into three phases: an initial burst phase that lasts roughly 5 s and involves rapid expansion of the gas-pyroclast mixture, a gravitational collapse phase that occurs when the erupted material fails to mix with sufficient air to form a buoyant column and thus collapses asymmetrically, and a PDC phase that is dominated by motion parallel to the ground surface and is influenced by topography. We vary key input parameters such as total gas energy and total solid mass to understand their influence on simulations, and we compare the simulations with independent field observations of damage and deposits, demonstrating that the models generally capture important large-scale features of the natural phenomenon. We also examine the 2-D and 3-D model results to estimate the flow Mach number and conclude that the range of damage sustained at villages on Montserrat can be reasonably explained by the spatial and temporal distribution of the dynamic pressure associated with subsonic PDCs.
    Description: Published
    Description: B03211
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Soufrière Hills Volcano ; blast, multiphase flow models ; dynamic pressure ; pyroclastic density currents ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The 2004–05 eruption of Etna was characterised by outpouring of degassed lava from two vents within Valle del Bove. After three months of eruption lava volumes were estimated to be between 18.5 and 32 × 106 m3, with eruption rate between 2.3 and 4.1 m3/s. Petrological analyses show that magma is resident in the shallow plumbing system, emplaced during the last South-East Crater activity. SO2 flux data show no increase at the onset of the eruption and SO2/HCl ratios in gas emitted from the eruptive fissure are consistent with a degassed magma. No seismic activity was recorded prior to eruption, unlike eruptions observed since the 1980's. The purely effusive nature of this eruption, fed by a degassed, resident magma and the fracture dynamics suggest that magmatic overpressure played a limited role in this eruption. Rather, lateral spreading of Etna's eastern flank combined with general inflation of the edifice triggered a geodynamically-controlled eruption.
    Description: Published
    Description: 1-4
    Description: partially_open
    Keywords: Volcanology: Effusive volcanism ; Volcanology: Volcano monitoring ; Volcanology: Eruption mechanisms and flow emplacement ; Volcanology: General or miscellaneous ; Tectonophysics: Tectonics and magmatism ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 490 bytes
    Format: 626609 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Here the application of the VOL-CALPUFF model by Barsotti et al. to a weak plume erupted from Mount Etna in July 2001 is presented and discussed. The reconstruction of the explosive event was obtained by using high-resolution weather forecasts, produced by a mesoscale nonhydrostatic model, and volcanic source data coming from observations and analytical studies. The plume rise and atmospheric dispersal models were investigated over 5 d of eruption mostly in terms of column height, aerial ash concentration, and ground deposition. Modeling results are shown as a function of various source conditions and compared to independent observations derived from satellite images and deposit mapping. The application of VOL-CALPUFF clearly highlights the crucial role played by meteorological conditions in determining dispersal dynamics. Some of the most important effects described by the model are (1) the large wind field influence on the plume height determination and tilting, (2) the contrasting dispersal patterns of ash particles of different sizes, (3) the complex and somehow nonintuitive distribution of ash on the ground resulting in preferential directions of dispersal and quite irregular deposit patterns, and (4) the impossibility to reproduce both the column height and the deposit accumulation pattern by adopting a steady state vent mass flow rate over the investigated 4-d period due to observed temporal changes in eruption dynamics. Modeling results also suggest the need for further integration of simulation outcomes with remote sensing and field reconstructions on ash dispersal processes in future.
    Description: Published
    Description: B03209
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Mount Etna 2001 eruption ; weak plume ; atmospheric effects ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The effect of pressure on melt viscosity was investigated for five compositions along the join An(CaAl2Si2O8)–Di(CaMgSi2O6) and four alkali silicates containing lithium, sodium, and potassium in constant ratio of ∼ 1:1:1, but alkali-silica ratios are varying. The experiments were performed in an internally heated gas pressure vessel at pressures from 50 to 400 MPa in the viscosity range from 108 to 1011.5 Pa⋅s using parallel plate viscometry. The polymerized An composition shows a negative pressure dependence of viscosity while the other, more depolymerized compositions of the join An–Di have neutral to positive pressure coefficients. The alkali silicates display neutral to slightly positive pressure coefficients for melt viscosity. These findings in the high viscosity range of 108–1011 Pa⋅s, where pressure appears to be more efficient than in low viscous melts at high temperature, are consistent with previous results on the viscosity of polymerized to depolymerized melts in the system NaAlSi3O8–CaMgSi2O6 by Behrens and Schulze [ H. Behrens and F. Schulze, Am. Mineral. 88, 1351 (2003) ]. Thus we confirm that the sign of the pressure coefficient for viscosity is mainly related to the degree of melt polymerization in silicate and aluminosilicate melts.
    Description: DFG Grant n.°BE1720/9
    Description: Published
    Description: 044504-14
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: open
    Keywords: viscosity ; polymerisation ; anorthite ; diopside ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...