ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (422,598)
Collection
Keywords
Language
Years
  • 1
    Publication Date: 2024-06-15
    Description: The objective of this study is to determine the effects of ocean acidification (OA) on the survival, development and swimming behaviour of embryos of the deep-sea coral Desmophyllum pertusum (syn. Lophelia pertusa). Upon spawning, fertilized embryos were collected and exposed to two pCO2 treatments corresponding to present pCO2 conditions (400 ppm) and future pCO2 conditions predicted under scenario IPCC RCP8.5 for the end of the century (1000 ppm). We monitored survival daily and we measured swimming velocity on day 9 after spawning. Temperature and pH were measured every 24h, salinity was measured every other day, and water samples were collected during the first and last day of the experiment to determine total alkalinity (TA). This dataset includes data on the effects of ocean acidification on swimming velocity of larvae of the deep-sea coral Desmophyllum pertusum. Embryos were exposed to two acidification (pCO2) treatments: present pCO2 conditions (400 ppm) and future pCO2 conditions predicted under RCP8.5 for the end of the century (1000 ppm). After rearing the embryos in the respective treatments for nine days, we recorded the swimming behaviour of larvae with a video camera. Videos were analyzed with manual particle tracking, and here we report the swimming velocity and total traveled distance of larvae in each experimental treatment.
    Keywords: ASSEMBLE_Plus; Association of European Marine Biological Laboratories Expanded; Climate change; cold-water coral; DATE/TIME; Deep sea; early life history; early life stages; iAtlantic; Image analysis, NIH ImageJ, MTrackJ plugin; Integrated Assessment of Atlantic Marine Ecosystems in Space and Time; Laboratory experiment; Larvae; larval behaviour; physiology; Remote operated vehicle; ROV; Sample ID; Species; Species, unique identification (Semantic URI); Species, unique identification (URI); Speed, swimming; Swim distance; Time in hours; Tisler_Sampling_Lophelia_pertusa_4; Tisler_Sampling_Lophelia_pertusa_6; Tisler Reef, Skagerrak; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 480 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-06-15
    Description: The objective of this study is to determine the effects of ocean acidification (OA) on the survival, development and swimming behaviour of embryos of the deep-sea coral Desmophyllum pertusum (syn. Lophelia pertusa). Upon spawning, fertilized embryos were collected and exposed to two pCO2 treatments corresponding to present pCO2 conditions (400 ppm) and future pCO2 conditions predicted under scenario IPCC RCP8.5 for the end of the century (1000 ppm). We monitored survival daily and we measured swimming velocity on day 9 after spawning. Temperature and pH were measured every 24h, salinity was measured every other day, and water samples were collected during the first and last day of the experiment to determine total alkalinity (TA). This dataset includes data on the effects of OA on embryo and larval survival of the deep-sea coral Desmophyllum pertusum. Embryos (age: first cleavage and 2 cell stage) were exposed to two acidification (pCO2) treatments: present pCO2 conditions (400 ppm) and future pCO2 conditions predicted under RCP8.5 for the end of the century (1000 ppm) and reared for a total of nine days. We counted embryos and larvae daily to determine larval survival under the two treatments.
    Keywords: ASSEMBLE_Plus; Association of European Marine Biological Laboratories Expanded; Climate change; cold-water coral; DATE/TIME; Deep sea; early life history; early life stages; iAtlantic; Integrated Assessment of Atlantic Marine Ecosystems in Space and Time; Laboratory experiment; Larvae; larval behaviour; pH; pH meter, Mettler Toledo, Seven2Go pH /Ion meter S8; physiology; Remote operated vehicle; Replicate; ROV; Salinity; Sample ID; Species; Species, unique identification (Semantic URI); Species, unique identification (URI); Temperature, water; Time in hours; Tisler_Sampling_Lophelia_pertusa_4; Tisler_Sampling_Lophelia_pertusa_6; Tisler Reef, Skagerrak; Treatment; Visual counts
    Type: Dataset
    Format: text/tab-separated-values, 1116 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-06-14
    Description: Abstract
    Description: SeisComP is a seismological software for data acquisition, processing, distribution and interactive analysis. The seismological software package has evolved within a decade from pure acquisition modules to a fully featured real-time earthquake monitoring software. The SeedLink protocol for seismic data transmission has been the core of SeisComP from the very beginning. Later additions included simple, purely automatic event detection, location and magnitude determination capabilities. Especially within the development of the 3rd-generation SeisComP, also known as SeisComP3 automatic processing capabilities have been augmented by graphical user interfaces (GUIs) for visualization, rapid event review and quality control.Communication between the modules is achieved using a dedicated messaging system that allows distributed computing and remote review. For seismological metadata exchange export/import tools to/from QuakeML and FDSN StationXML are available, which also provide convenient interfaces with 3rd-party software. The initial SeisComP3 development took place at GFZ between 2006 and 2008 within the GITEWS project (German Indonesian Tsunami Early Warning System) and continued with increasing engagement of gempa GmbH, a software company established by the initial development team of the GFZ.
    Keywords: real-time ; data ; processing ; earthquakes ; monitoring ; fdsn ; standards ; seismology ; C++ ; python ; AGPL ; open ; EARTH SCIENCE SERVICES 〉 DATA ANALYSIS AND VISUALIZATION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE
    Language: English
    Type: Software
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-06-14
    Description: Abstract
    Description: The dataset contains the seismic weight drop data acquired in Private Reserve Santa Gracia, Chile. The data acquisition was conducted as a part of the EarthShape project in the subproject of Geophysical Imaging of the Deep EarthShape (GIDES). The seismic line was setup to cut across an existing borehole location with core and geophysical logging data available (Krone et al., 2021; Weckmann et al., 2020). The data was acquired to image the deep weathering zone identified by the borehole data across the seismic profile. Included in the datasets are the raw data of the CUBE data logger, SEG-Y data of the recorded shots, and the shot and receiver geometry data. A vital aspect of comprehending the interplay between geological and biological processes lies in the imaging of the critical zone, located deep beneath the surface, where the transition from unaltered bedrock to fragmented regolith occurs. It had been hypothesized that the depth of such weathering zone is dependent on the climate condition of the area. A more humid climate with higher precipitation will result in a deeper weathering front. As a part of the EarthShape project (SPP-1803 ‘EarthShape: Earth Surface Shaping by Biota’), specifically the Geophysical Imaging of the Deep EarthShape (GIDES - Grant No. KR 2073/5-1), we aim to image the weathering zone using the geophysical approach. Using the seismic method, we can differentiate different weathered layers based on the seismic velocity while also providing a 2D subsurface image of the critical zone. We conducted a seismic weight drop experiment in the Private Reserve Santa Gracia, Chile, to observe the depth of the weathering zone in a semi-arid climate and compare the resulting model with existing borehole data (Krone et al., 2021; Weckmann et al., 2020). The acquired data can then be used for multiple seismic imaging techniques, including body wave tomography and multichannel analysis of surface waves.
    Description: Other
    Description: The DFG Priority Program 1803 "EarthShape - Earth Surface Shaping by Biota" (2016-2022; https://www.earthshape.net/) explored between scientific disciplines and includes geoscientists and biologists to study from different viewpoints the complex question how microorganisms, animals, and plants influence the shape and development of the Earth’s surface over time scales from the present-day to the young geologic past. All study sites are located in the north-to-south trending Coastal Cordillera mountains of Chile, South America. These sites span from the Atacama Desert in the north to the Araucaria forests approximately 1300 km to the south. The site selection contains a large ecological and climate gradient ranging from very dry to humid climate conditions.
    Keywords: Geophysics ; seismic ; weight drop ; weathering zone ; critical zone ; bedrock ; granite ; passive seismic ; 3C sensor ; EarthShape ; Chile ; Coastal Cordillera ; Private Reserve Santa Gracia ; CONTROLLED_SOURCE_SEISMOLOGY 〉 REFRACTION ; CONTROLLED_SOURCE_SEISMOLOGY 〉 WEIGHT-DROP_SOURCE ; CONTROLLED_SOURCE_SEISMOLOGY 〉 NEAR_SURFACE ; PASSIVE_SEISMIC 〉 STATIONS ; SENSOR 〉 GEOPHONE ; SENSOR 〉 3-C ; LAND ; SEG-Y_DATA_FORMAT ; MINISEED_DATA_FORMAT ; CONTROLLED_SOURCE_SEISMOLOGY 〉 RAW_DATA ; CONTROLLED_SOURCE_SEISMOLOGY 〉 VERTICALLY_STACKED_DATA ; EARTH SCIENCE 〉 SOLID EARTH ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Department of Physical Geography, University of Stockholm | Supplement to: Siewert, Matthias Benjamin; Hugelius, Gustaf; Heim, Birgit; Faucherre, Samuel (2016): Landscape controls and vertical variability of soil organic carbon storage in permafrost-affected soils of the Lena River Delta. CATENA, 147, 725-741, https://doi.org/10.1016/j.catena.2016.07.048
    Publication Date: 2024-06-14
    Description: To project the future development of the soil organic carbon (SOC) storage in permafrost environments, the spatial and vertical distribution of key soil properties and their landscape controls needs to be understood. This article reports findings from the Arctic Lena River Delta where we sampled 50 soil pedons. These were classified according to the U.S.D.A. Soil Taxonomy and fall mostly into the Gelisol soil order used for permafrost-affected soils. Soil profiles have been sampled for the active layer (mean depth 58 ± 10 cm) and the upper permafrost to one meter depth. We analyze SOC stocks and key soil properties, i.e. C%, N%, C/N, bulk density, visible ice and water content. These are compared for different landscape groupings of pedons according to geomorphology, soil and land cover and for different vertical depth increments. High vertical resolution plots are used to understand soil development. These show that SOC storage can be highly variable with depth. We recommend the treatment of permafrost-affected soils according to subdivisions into: the surface organic layer, mineral subsoil in the active layer, organic enriched cryoturbated or buried horizons and the mineral subsoil in the permafrost. The major geomorphological units of a subregion of the Lena River Delta were mapped with a land form classification using a data-fusion approach of optical satellite imagery and digital elevation data to upscale SOC storage. Landscape mean SOC storage is estimated to 19.2 ± 2.0 kg C/m**2. Our results show that the geomorphological setting explains more soil variability than soil taxonomy classes or vegetation cover. The soils from the oldest, Pleistocene aged, unit of the delta store the highest amount of SOC per m2 followed by the Holocene river terrace. The Pleistocene terrace affected by thermal-degradation, the recent floodplain and bare alluvial sediments store considerably less SOC in descending order.
    Keywords: Changing Permafrost in the Arctic and its Global Effects in the 21st Century; PAGE21
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Zubrzycki, Sebastian; Kutzbach, Lars; Grosse, Guido; Desyatkin, Alexey; Pfeiffer, Eva-Maria (2013): Organic carbon and total nitrogen stocks in soils of the Lena River Delta. Biogeosciences, 10(6), 3507-3524, https://doi.org/10.5194/bg-10-3507-2013
    Publication Date: 2024-06-14
    Description: The Lena River Delta, which is the largest delta in the Arctic, extends over an area of 32 000 km**2 and likely holds more than half of the entire soil organic carbon (SOC) mass stored in the seven major deltas in the northern permafrost regions. The geomorphic units of the Lena River Delta which were formed by true deltaic sedimentation processes are a Holocene river terrace and the active floodplains. Their mean SOC stocks for the upper 1 m of soils were estimated at 29 kg/m**2 ± 10 kg/m**2 and at 14 kg/m**2 ± 7 kg/m**2, respectively. For the depth of 1 m, the total SOC pool of the Holocene river terrace was estimated at 121 Tg ± 43 Tg, and the SOC pool of the active floodplains was estimated at 120 Tg ± 66 Tg. The mass of SOC stored within the observed seasonally thawed active layer was estimated at about 127 Tg assuming an average maximum active layer depth of 50 cm. The SOC mass which is stored in the perennially frozen ground at the increment 50-100 cm soil depth, which is currently excluded from intense biogeochemical exchange with the atmosphere, was estimated at 113 Tg. The mean nitrogen (N) stocks for the upper 1 m of soils were estimated at 1.2 kg/m**2 ± 0.4 kg/m**2 for the Holocene river terrace and at 0.9 kg/m**2 ± 0.4 kg/m**2 for the active floodplain levels, respectively. For the depth of 1 m, the total N pool of the river terrace was estimated at 4.8 Tg ± 1.5 Tg, and the total N pool of the floodplains was estimated at 7.7 Tg ± 3.6 Tg. Considering the projections for deepening of the seasonally thawed active layer up to 120 cm in the Lena River Delta region within the 21st century, these large carbon and nitrogen stocks could become increasingly available for decomposition and mineralization processes.
    Type: Dataset
    Format: application/zip, 29 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schwamborn, Georg; Rachold, Volker; Grigoriev, Mikhail N (2002): Late Quaternary Sedimentation History of the Lena Delta. Quaternary International, 89(1), 119-134, https://doi.org/10.1016/S1040-6182(01)00084-2
    Publication Date: 2024-06-14
    Description: Core and outcrop analysis from Lena mouth deposits have been used to reconstruct the Late Quaternary sedimentation history of the Lena Delta. Sediment properties (heavy mineral composition, grain size characteristics, organic carbon content) and age determinations (14C AMS and IR-OSL) are applied to discriminate the main sedimentary units of the three major geomorphic terraces, which form the delta. The development of the terraces is controlled by complex interactions among the following four factors: (1) Channel migration. According to the distribution of 14C and IR-OSL age determinations of Lena mouth sediments, the major river runoff direction shifted from the west during marine isotope stages 5-3 (third terrace deposits) towards the northwest during marine isotope stage 2 and transition to stage 1 (second terrace), to the northeast and east during the Holocene (first terrace deposits). (2) Eustasy. Sea level rise from Last Glacial lowstand to the modern sea level position, reached at 6-5 ka BP, resulted in back-filling and flooding of the palaeovalleys. (3) Neotectonics. The extension of the Arctic Mid-Ocean Ridge into the Laptev Sea shelf acted as a halfgraben, showing dilatation movements with different subsidence rates. From the continent side, differential neotectonics with uplift and transpression in the Siberian coast ridges are active. Both likely have influenced river behavior by providing sites for preservation, with uplift, in particular, allowing accumulation of deposits in the second terrace in the western sector. The actual delta setting comprises only the eastern sector of the Lena Delta. (4) Peat formation. Polygenetic formation of ice-rich peaty sand (''Ice Complex'') was most extensive (7-11 m in thickness) in the southern part of the delta area between 43 and 14 ka BP (third terrace deposits). In recent times, alluvial peat (5-6 m in thickness) is accumulated on top of the deltaic sequences in the eastern sector (first terrace).
    Keywords: Arga Island; AWI_PerDyn; AWI Arctic Land Expedition; ChekanovskyHighl; HAND; Laptev Sea System; LD00-1316-1; LD00-1316-2; LD00-1316-3; LD98-D01; LD98-D06; LD98-D07; LD98-D08; LD98-D10; LD98-S04; LD98-S05; LD98-S06; Lena-Delta1998; Lena-Delta1999; Lena-Delta2000; LSS; minerals; Nikolay Lake, Lena Delta, Russia; Olenyok Channel; PERM; Permafrost Research (Periglacial Dynamics) @ AWI; PG1440; radiocarbon; RCD; river delta; Rotary core drilling; RU-Land_1998_Lena; RU-Land_1999_Lena; RU-Land_2000_Lena; Samoylov Island, Lena Delta, Siberia; Sampling by hand; Sampling permafrost; Sardakh Channel; Sediment core; sediments; Seismic, shallow profile; SEISS
    Type: Dataset
    Format: application/zip, 14 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Fritz, Michael; Wolter, Juliane; Rudaya, Natalia; Palagushkina, Olga V; Nazarova, Larisa B; Obu, Jaroslav; Rethemeyer, Janet; Lantuit, Hugues; Wetterich, Sebastian (2016): Holocene ice-wedge polygon development in northern Yukon permafrost peatlands (Canada). Quaternary Science Reviews, 147, 279-297, https://doi.org/10.1016/j.quascirev.2016.02.008
    Publication Date: 2024-06-14
    Description: Ice-wedge polygon (IWP) mires in the Arctic and Subarctic are extremely vulnerable to climatic and environmental change. We present the results of a multidisciplinary paleoenvironmental study on IWPs in the northern Yukon, Canada. High-resolution laboratory analyses were carried out on a permafrost core and the overlying seasonally thawed (active) layer, from a low-centered IWP located in a drained lake basin on Herschel Island. In relation to 14 Accelerator Mass Spectrometry (AMS) radiocarbon dates spanning the last 5000 years, we report sedimentary data including grain size distribution and biogeochemical parameters (organic carbon, nitrogen, C/N ratio, d13C), stable water isotopes (d18O, dD), as well as fossil pollen, plant macrofossil and diatom assemblages. Three sediment units (SUs) correspond to the main stages of deposition (1) in a thermokarst lake (SU1: 4950 to 3950 cal yrs BP), (2) during transition from lacustrine to palustrine conditions after lake drainage (SU2: 3950 to 3120 cal yrs BP), and (3) in palustrine conditions in the IWP field that developed after drainage (SU3: 3120 cal yrs BP to AD 2012). The lacustrine phase (pre 3950 cal yrs BP) is characterized by planktonic-benthic and pioneer diatoms species indicating circumneutral waters, and very few plant macrofossils. The pollen record has captured a regional signal of relatively stable vegetation composition and climate for the lacustrine stage of the record until 3950 cal yrs BP. Palustrine conditions with benthic and acidophilic species characterize the peaty shallow-water environments of the low-centered IWP. The transition from lacustrine to palustrine conditions was accompanied by acidification and rapid revegetation of the lake bottom within about 100 years. Since the palustrine phase we consider the pollen record as a local vegetation proxy dominated by the plant communities growing in the IWP. Ice-wedge cracking in water-saturated sediments started immediately after lake drainage at about 3950 cal yrs BP and led to the formation of an IWP mire. Permafrost aggradation through downward closed-system freezing of the lake talik is indicated by the stable water isotope record. The originally submerged IWP center underwent gradual drying during the past 2000 years. This study highlights the sensitivity of permafrost landscapes to climate and environmental change throughout the Holocene.
    Keywords: AWI_PerDyn; Permafrost Research (Periglacial Dynamics) @ AWI
    Type: Dataset
    Format: application/zip, 7 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-06-14
    Description: During the expedition Kytalyk and Pokhodsk 2012 several cores in the polygonal tundra were drilled. Sediment data (gravimetric ice content, grain-size parameters, mass specific magnetic susceptibility, TC, TOC, TN, TOC/TN, d13C), ground ice data (dD, d18O, d excess) and paleoecological data (pollen, plant macrofossils, tecamoebae) are presented in these data sets. The data are related to the expeditions report "Studies of Polygons in Siberia and Svalbard" published in Reports on Polar and Marine Research 267 by Lutz Schirrmeister, Liudmila Pestryakova, Andrea Schneider and Sebastian Wetterich. Furthermore these data are related to the paper "Late Holocene ice-wedge polygon dynamics in northeastern Siberian coastal lowlands" still under review by the journal Arctic, Antarctic, and Alpine Research. Ice-wedge polygons are common features of northeastern Siberian lowland periglacial tundra landscapes. To deduce the formation and alternation of ice-wedge polygons in the Kolyma Delta and in the Indigirka Lowland, we studied shallow cores, up to 1.3 m deep, from polygon center and rim locations. The formation of well-developed low-center polygons with elevated rims and wet centers is shown by the beginning of peat accumulation, increased organic matter contents and changes in vegetation cover from Poaceae-, Alnus-, and Betula-dominated pollen spectra to dominating Cyperaceae and Botryoccocus presence, and Carex and Drepanocladus revolvens macro-fossils. Tecamoebae data support such a change from wetland to open-water conditions in polygon centers by changes from dominating eurybiontic and sphagnobiontic to hydrobiontic species assemblages. The peat accumulation indicates low-center polygon formation and started between 2380 ± 30 and 1676 ± 32 years before present (BP) in the Kolyma Delta. We recorded an opposite change from open-water to wetland conditions due to rim degradation and consecutive high-center polygon formation in the Indigirka Lowland between 2144 ± 33 and 1632 ± 32 yrs BP. The late Holocene records of polygon landscape development reveal changes in local hydrology and soil moisture.
    Keywords: AWI_PerDyn; Permafrost Research (Periglacial Dynamics) @ AWI
    Type: Dataset
    Format: application/zip, 12 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Fuchs, Matthias; Grosse, Guido; Jones, Benjamin M; Strauss, Jens; Baughman, Carson A; Walker, Donald A (2018): Sedimentary and geochemical characteristics of two small permafrost-dominated Arctic river deltas in northern Alaska. arktos - The Journal of Arctic Geosciences, 4(1), https://doi.org/10.1007/s41063-018-0056-9
    Publication Date: 2024-06-14
    Description: This data set describes the soil core and sample characteristics from the Ikpikpuk and Fish Creek river delta on the Arctic Coastal Plain in northern Alaska. The collection of the permafrost soil cores and the analysis of the samples are described in Fuchs et al. (2018). Sedimentary and geochemical characteristics of two small permafrost-dominated Arctic river deltas in northern Alaska. This data compilation consists of two data set. The first data set describes the properties of the collected permafrost soil cores from the Ikpikpuk river (IKP) and Fish Creek river (FCR) delta. This includes the coordinates of the nine coring locations, the field measurements of the active- and organic layer thickness at the coring locations, and the length of the collected permafrost core. In addition, soil organic carbon and soil nitrogen stocks and densities derived from the laboratory analyses for the reference depths 0-30 cm, 0-100 cm, 0-150 cm and 0-200 cm are presented in kg C m-2 and in kg C m-3. The second data set provides the raw laboratory data for all the samples of the nine collected permafrost cores in the Ikpikpuk and Fish Creek River Delta. All laboratory analyzes were carried out at the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam. The third data set presents the results from the radiocarbon dating of chosen samples from five different permafrost cores. This includes the AMS radiocarbon date and the calibrated age of a sample. In addition, the sediment and organic carbon accumulation rates for the dated samples are included. This data set allows to calculate the total carbon and nitrogen storage in two small Arctic river deltas (IKP and FCR) for the first two meter of soil and enlarges the available permafrost cores for Arctic river delta deposits.
    Keywords: AWI_PerDyn; Permafrost Research (Periglacial Dynamics) @ AWI; PETA-CARB; Rapid Permafrost Thaw in a Warming Arctic and Impacts on the Soil Organic Carbon Pool
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...